

Efficient Methods for Incorporating Knowledge into Topic Models

Yi Yang, Doug Downey Electrical Engineering and Computer Science Northwestern University Evanston, IL yiyang@u.northwestern.edu ddowney@eecs.northwetsern.edu

Jordan Boyd-Graber

Computer Science University of Colorado Boulder, CO Jordan.Boyd.Graber @colorado.edu

Outline

- Introduction
- Incorporating Knowledge into LDA
- Experiments
- Conclusion

Introduction

• Topics learned by LDA

does not always correlate with human judgments

• incorporate prior knowledge into topic models

Introduction

- Topic modeling with prior knowledge
 - Inference is cumbersome for LDA model
 - only work in small-scale scenarios

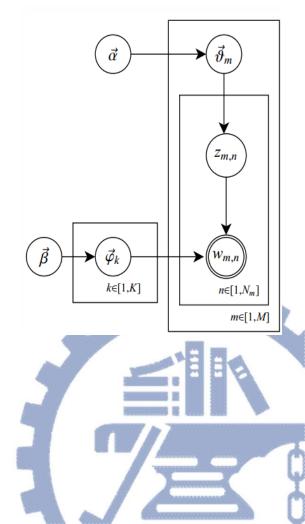
 Model which can both benefit from rich prior information and scale to large datasets

• LDA

θ_d : multinomial distribution over topics for document d

- $Ø_z$: multinomial distribution over words for topic z
- α , β: the hyperparameters for θ and φ (Dirichlet distribution)
- $z_{i,j}$: the topic of word j in in the document i from θ_i

Discovering the latent topic assignments z from observed words w requires inferring the the posterior distribution P(z|w)



collapsed Gibbs sampling

$$P(z=t|\mathbf{z}_{-},w) \propto (n_{d,t}+\alpha)\frac{n_{w,t}+\beta}{n_{t}+V\beta} \qquad (1)$$

z_: the topic assignments of all other tokens w word type $n_{d,t}$: thenumber of times topic *t* is used in document *d*, $n_{w,t}$: the number of times word *w* is used in topic *t*, n_t : the marginal count of the number of tokens assigned to topic *t*.

collapsed Gibbs sampling

$$\sum_{t} P(z = t | \mathbf{z}_{-}, w) = \underbrace{\sum_{t} \frac{\alpha \beta}{n_t + V \beta}}_{s}$$
(2)
+
$$\underbrace{\sum_{t, n_{d,t} > 0} \frac{n_{d,t} \beta}{n_t + V \beta}}_{r} + \underbrace{\sum_{t, n_{w,t} > 0} \frac{(n_{d,t} + \alpha) n_{w,t}}{n_t + V \beta}}_{q}.$$

- s: the "smoothing only" bucket—constant for all documents
- t: the "document only" bucket that is shared by a document's tokens
- *q*: computed specifically for each token, the sparsity of word-topic count. the largest mass and few non-zero terms

- Factor Model for Incorporating Prior Knowledge
 - Existing methods (incorporating prior knowledge) use conventional Gibbs sampling → hinders inference.
 - LDA assumes that the hidden topic assignment of a word is independent from other hidden topics.
 → loses the rich correlation between words.

Factor Model for Incorporating Prior Knowledge

$$\psi(\mathbf{z}, M) = \prod_{z \in \mathbf{z}} \exp f_m(z, w, d) \tag{3}$$

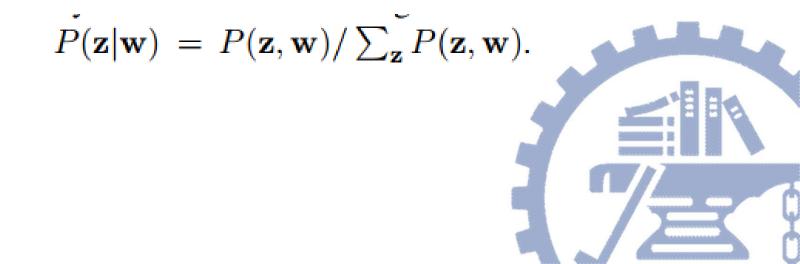
M: the set of prior knowledge **z**: the current topic assignments $f_m(z, w, d)$: all hidden topics of word w

If m is knowledge about document d, then $f_m(z, w, d)$ applies to all topics that are in document d

fassigns large values to the topics that accord with prior knowledge

• Factor Model for Incorporating Prior Knowledge

$$P(\mathbf{w}, \mathbf{z} | \alpha, \beta, M) = P(\mathbf{w} | \mathbf{z}, \beta) P(\mathbf{z} | \alpha) \psi(\mathbf{z}, M)$$
(4)
$$= \int_{\theta} \int_{\phi} p(\mathbf{w} | \mathbf{z}, \phi) p(\phi | \beta) p(\mathbf{z} | \theta) p(\theta | \alpha) \psi(\mathbf{z}, M) d\theta d\phi$$
(4)
$$= \psi(\mathbf{z}, M) \int_{\theta} \int_{\phi} p(\mathbf{w} | \mathbf{z}, \phi) p(\phi | \beta) p(\mathbf{z} | \theta) p(\theta | \alpha) d\theta d\phi.$$



- Factor Model for Incorporating Prior Knowledge
- Standard LDA configurations z (set by the hyperparameters α and β)
 that compromise
 - having few topics per document
 - having few words per topic

Our factor model

adds a further constraint to consider ensembles of topic assignments z to be compatible with a standard LDA model and the given prior knowledge

• Factor Model for Incorporating Prior Knowledge

$$P(z = t | w, \mathbf{z}_{-}, M)$$
(5)
$$= \frac{P(\mathbf{w}, \mathbf{z}_{-}, z = t | \alpha, \beta, M)}{P(\mathbf{w}, \mathbf{z}_{-} | \alpha, \beta, M)}$$
$$= \frac{P(\mathbf{w}, \mathbf{z}_{-}, z = t)}{P(\mathbf{w}, \mathbf{z}_{-})} \frac{\psi(\mathbf{z}_{-}, z = t, M)}{\psi(\mathbf{z}_{-}, M)}$$
$$\propto \left\{ (n_{d,t} + \alpha) \frac{n_{w,t} + \beta}{n_{t} + W\beta} \right\} \frac{\psi(\mathbf{z}_{-}, z = t, M)}{\psi(\mathbf{z}_{-}, M)}$$
$$\propto \left\{ (n_{d,t} + \alpha) \frac{n_{w,t} + \beta}{n_{t} + W\beta} \right\} \exp f_{m}(z = t, w, d).$$

(1) standard LDA
 (2) The summation of P(z = t) for sampling.
 →

speeding up the sampler is finding a sparse representation

- a. word correlation knowledge
- b. document-label knowledge

Word Correlation Prior Knowledge

- must-link relation : two words tend to be related to the same topics
- cannot-link relation : two words should not be within the same topic.

Lakers and Celtics \rightarrow must-link relation Lakers and bank \rightarrow cannot-link relation

Word Correlation Prior Knowledge

$$\mathcal{E}_m(z, w, d) = \sum_{u \in M_w^m} \log \max(\lambda, n_{u,z}) + \sum_{v \in M_w^c} \log \frac{1}{\max(\lambda, n_{v,z})}.$$

 $M_{\rm W}$: a set of prior knowledges associated with w

 M_w^m : the must-link set of w

 M_w^c : the cannot-link set of w

 λ : a hyperparameter

Word Correlation Prior Knowledge

$$P(z = t | w, \mathbf{z}_{-}, M)$$

$$\propto \left\{ \frac{\alpha \beta}{n_t + V\beta} + \frac{n_{d,t}\beta}{n_t + V\beta} + \frac{(n_{d,t} + \alpha)n_{w,t}}{n_t + V\beta} \right\}$$

$$\left\{ \prod_{u \in M_w^m} \max(\lambda, n_{u,t}) \prod_{v \in M_w^c} \frac{1}{\max(\lambda, n_{v,t})} \right\}$$
(7)

 $\lambda\,$: control the "strength" of the prior knowledge term. If λ is large, the prior knowledge has little impact on the conditional probability of topic assignments

 $n_{u,t}$: topic counts for must-link word u $n_{v,t}$: topic counts for cannot-link word u \rightarrow All often sparse

- Other Types of Prior Knowledge
 - Labeled-LDA (document labels) one-to-one mapping between topics and labels restricts topics to be sampled only from the documents label set

$$f_m(z, w, d) = \begin{cases} 1, & \text{if } z \in m_d \\ -\infty, & \text{else} \end{cases}$$

 m_d : document d's label set converted to corresponding topic labels $f_m(z, w, d)$ is sparse

Define $\psi(z, M)$ appropriately so that f(z, w, d) are sparse

Dataset

DATASET	DOCS	TYPE	TOKEN(APPROX)
NIPS	1,500	12,419	1,900,000
NYT-NEWS	3,000,000	102,660	100,000,000
20NG	18,828	21,514	1,946,000

Table 1: Characteristics of benchmark datasets. We use NIPS and NYT for word correlation experiments and 20NG for document label experiments.

Dataset

DATASET	DOCS	TYPE	TOKEN(APPROX)
NIPS	1,500	12,419	1,900,000
NYT-NEWS	3,000,000	102,660	100,000,000
20NG	18,828	21,514	1,946,000

Table 1: Characteristics of benchmark datasets. We use NIPS and NYT for word correlation experiments and 20NG for document label experiments.

• Prior Knowledge Generation

- Word Correlation Prior Knowledge
 - WordNet 3.0 to obtain synsets for word types
 - Existing pretrained word embedding
- Document Label Prior Knowledge
 - documents in the 20NG dataset are already associated with labels

- Baselines
 - DF-LDA

incorporates word must-links and cannot-links using a Dirichlet Forest prior in LDA

Logic-LDA

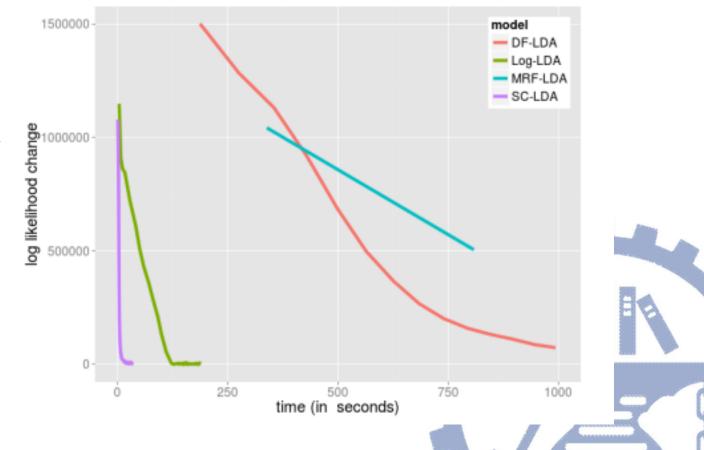
encodes general domain knowledge as first-order logic and incorporates it in LDA

• MRF-LDA

encodes word correlations in LDA as a Markov random field

• Convergence

log likelihood change is a good indicator of whether a model has converged or not



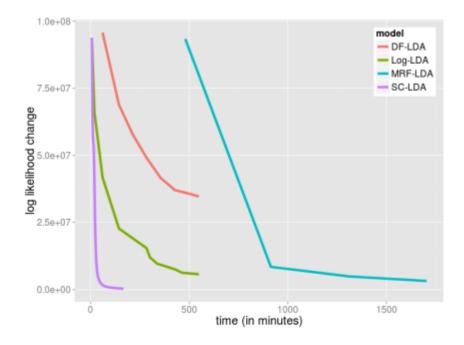


Figure 2: Models' log likelihood convergence on NIPS dataset (above) and NYT-News dataset (below). For NIPS, a 100-topic model with 100 must-links is trained. For NYT-News, a 500topic model with 100 must-links is trained. SC-LDA reaches likelihood convergence much more rapidly than the other methods.

• Convergence

	# Word Correlations			
round	C 0	C100	C500	C1000
1st iteration	2.02	2.14	2.30	2.50
50th iteration	0.53	0.56	0.58	0.62
100th iteration	0.48	0.50	0.53	0.56
200th iteration	0.48	0.49	0.52	0.56

Table 2: SC-LDA runtime (in seconds) in the 1st, 50th, 100th, and 200th iteration with different numbers of correlations.

Document Label Prior Knowledge

# Topics						
	T50	T100	T200	T500		
Labeled-LDA	0.93	1.89	3.60	8.05		
SC-LDA	0.38	0.45	0.51	0.72		
# Labeled Documents						
	C500	C1000	C2000	C5000		
Labeled-LDA	1.95	1.88	1.75	1.48		
SC-LDA	0.51	0.45	0.41	0.31		

Table 3: The average running time per iteration over 100 iterations, averaged over 5 seeds, on 20NG dataset. Experiments begin with 100 topics, 1000 labeled documents, and then vary one dimension: number of topics (top), or number of labeled documents (bottom).

Conclusion

• Theory

- Present a factor graph framework for incorporating prior knowledge into topic models
- Take advantage of the sparsity to speed up training
- Application(Future direction)
 - Interactive topic modeling
 - Personalized topic modeling

Thank You!

