Recommending Forum Threads for
Exception-related Bugs

Abstract—Most modern programming languages implement
their own exception handling mechanisms. When a bug triggers
an exception, to better understand the bug, programmers often
search online forums (e.g. Stackoverflow) for related threads. As
a forum can have many threads and many issues discussed, it
becomes difficult to search the right ones for a specific thrown
exception. Our empirical study shows that issue trackers record
many manual fixes that are related to various exceptions, while
programmers constantly discuss thrown exceptions on forums.
Based on the findings, in this paper, we propose an approach
that builds the links between bug fixes and forum threads. With
the support of such links, we further propose an approach that
recommends related forum threads for a given thrown exception.
We conduct an evaluation on forum threads from Stackoverflow
and bug fixes from GitHub. Our results show that our approach
achieves higher hit rate and average rank than existing web
search engines and existing approaches.
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I. INTRODUCTION

An exception is an event, which occurs during the execution
of program and disrupts the normal flow of the program’s
instructions. When an exception occurs within a method, the
method creates an exception object and hands it off to the
runtime system. Fig. 1 shows the call stack and the exception
handler searching process. For many advanced programming
languages like Java, C# and Python etc., most errors or bugs
triggered during runtime will represent as the form of excep-
tion [1]. During software development process, exceptions are
strong phenomenons of existence for bugs or bad smells in
codes [2].

To deal with exception-related bugs, developers still highly
reply on online resources [3], use search engines like Google
or Bing for the solutions. However, there are gaps between the
exceptions in IDE and the Web. First of all, useful information
disperses widely in the Internet in variety of forms, such as
online communities, forums, mailing list or Q&A sites [4], [5].
Searching in the Internet usually takes much efforts. A study
shows that developers spends average 19% of their time on
surfing the Web [6]. Furthermore, traditional searching engines
help but far from enough. Google, Bing and other searching
engines with query length limitation take few words thus may
lose much information. It’s also difficult to manually check
large amounts of result pages in order to find the right one.
Last but not least, web pages usually contain lots of useless
and confusing information like advertisements [7]. Gibson et
al. [8] estimated that about 40% to 50% of web data could be
attributed as noise, and the ratio is constantly increasing due
to explosive growth of the Internet.
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Fig. 1. Call stack and exception handler searching process

It’s of great significance to help developers deal with
exception-related bugs in a more efficiency way. One of the
best solutions is automatic recommendation, which improves
the efficiency of developers as well as the the reliability of
software project. There have been a considerable amount of
research works on automatic provide solutions or suggestions
for programming errors or exceptions [9], [10].

Unfortunately, the results of these existing automatic rec-
ommendation approaches would probably lead to poor results
when applied in exception solving for many reasons. One
important reason is lacking of pertinence. Existing approaches
are mainly built for general programming errors, like bugs or
syntax errors [11], [12]. However, exception is full of specific
structures which should be analyzed in a more detailed way.
For example, java.lang.NullPointerException, a very common
exception in Java. We can extract the name of exception
NullPointerException, also java and lang refer to the related
package or class. Besides, We can also easily extract more
formatted information such as stacktrace as well as the codes
which throws out the exception. Another reason is losing of
context. Usually, number of reasons may lead to the occur
of an exception. A same exception may totally differs in
coding context, such as class type, function calling sequence
or reference libraries. [13]-[15] take only parts of exception
context information as query input which can not get complete
information.

Stackoverflow is one of the most popular Q&A sites which
owns more than 4 million registered users and 11 million ques-
tions [16]-[18]. Many developers also share and learn open-
source projects in software repository platforms [19]. One of
such platforms is GitHub, in which as of 2015, there were



Java exception not caught?

| have a small theoretical problem with try-catch constructions.
| took a practical exam yesterday about Java and | don't understand following example

try {

try {
System.out.print("A");
throw new Exception("1");

} catch (Exception e) {
System.out.print("B");
throw new Exception("2");

} finally {
System.out.print("C");
throw new Exception("3");

}
} catch (Exception e) {
System.out.print(e.getMessage());

The question was "what the output will look like?"

| was pretty sure it would be AB2C3, BUT suprise suprise, it's not true.
The right answer is ABC3 (tested and really it's like that).

My question is, where did the Exception("2") go?

java  exception  try-catch

(a) An exception-related Stackoverflow question

GoogleCodeExporter opened this issue 6 days ago - 1 comment

E GoogleCodeExporter commented 6 days ago

C:\Users\XXXx\Downloads>java.exe -jar AudioSteganography.jar
Exception in thread "main” java.lang.ArrayIndexOutOfBoundsException: @
at audiosteganography.Test.main(Test.java:19)

Original issue reported on code.google.com by gyandeep...@mail.com on 9 Feb 2013 at 4:42

(b) An exception-related GitHub issue

Fig. 2. Examples of exception-related resources in Stackoverflow and GitHub

over 9 million users and 21.1 million repositories [20]. Denzil
Correa et al. proposed an survey, and shows more than 60%
bug-fixers do search and post questions on community-driven
Q&A websites like Stackoverflow to leverage the archived
knowledge and get inputs from experts when applicable [21].
As shown in Fig. 2, the large amount of Q&A or project
issue resources in Stackoverflow as well as GitHub provide
a promising way to build a cross-domain exception solver.
However, we will face some fundamental challenges for
our approach. First, there are so many different kinds of
information in Stackoverflow and GitHub which may make
an influence for recommendation. It’s necessary to make out
what are the most helpful and important. Second, Stackover-
flow and GitHub are two different domains. There are some
totally different features or data structures between them. For
example, the close state of a GitHub issue usually means
the problem has been successfully solved. However, failing
to solving a Stackoverflow question usually leads to the close
state. We need to deal with the differences in the cross-domain
problem. Third, the gap between online community resources
and the exception context. As shown in Fig. 2, Most part
of resources in Stackoverflow and GitHub are in the form

of natural language such as English, while most parts of an
exception are formal codes or exception stacktrace.

In order to solve the challenges mentioned, first we conduct-
ed an empirical study for Stackoverflow and GitHub resources.
Three questions are raised in the study: (1) Why Stackoverflow
and GitHub? (2) How suitable for Exception Solve? (3) Which
are key features? Then, for cross-domain problem, we propose
and build exception tree. An large-scale software programming
taxonomy will be help in this case. From top to bottom,
exception tree contains three layers, programming language
layer, tags layer and exception context layer. All exception-
related Stackoverflow Q&As and GitHub issues will link to
the tree nodes. For the last challenge, we conduct four kinds
of features to train our supervised machine learning model,
including lexical features, program features, community based
features and exception tree based features. Among them,
exception tree based features plays an important role.

Our contributions mainly include:

e An empirical study of exception-related Stackoverflow

and GitHub resources

o Propose and construction of exception tree to solve the

cross-domain problem

o A semi-supervised learning model with four different

features for recommendation

The rest of this paper is organised as follows. Section II de-
scribes the related work around exception solvers. Section III
provides the approach overview. Section IV is an empirical
study for Stackoverflow and GitHub resources. Section V
describes the recommendation process which includes four
main components. Section VI performs experiments to show
the efficiency and accuracy of the approach. Section VII
discusses our summary and future work.

II. RELATED WORK

There have been a considerable amount of research works
on automatically providing suggestions for programming er-
rors or exceptions. These approaches can be divided into two
kinds: retrieval filtering and content-based approaches. For the
retrieval filtering approaches [7], [11], [22]-[24], they mainly
focus on the way to construct a query from programming
exception context, then filter out required results. Several
existing search engines, such as general search engine Google
or online communities internal search APIs, will accept the
queries and return group of results. With the help of ranking
models and filtering strategies, results with highest scores are
recommended. Mohammad Masudur Rahman [13] uses APIs
from Google to recommend relevant context from web pages
about programming errors and exceptions. SurfClipse [14] is
an context-aware meta searching with the support from Bing,
Yahoo and Google APIs. There are advantages for these kinds
of approaches. It’s simple and reliable to construct search
query, such as using term frequency or entropy. However, APIs
of search engines usually only accept few keywords and do
not support complex query settings. As a result, the exception
context information cannot be fully expressed and transferred
which leads to poor recommending quality.



TABLE I
EXCEPTIONS IN DIFFERENT PROGRAMMING LANGUAGES

Languages Exception Keywords Exception Paradigms Exception Examples

Java try, catch, throw, finally, exception try...throw Exception...catch...Exception...finally java.lang.NullPointerException
Javascript(js)  try, catch, finally, throw, exception, error try...throw Exception...catch [Exception]...finally...  URIError

Ruby raise, rescue, ensure, throw, catch, exception  raise [Exception]...rescue Exception...ensure... StandardException

C++(cpp) try, catch, throw, exception try...throw Exception...catch Exception... DerivedException

C#(c-sharp) try, catch, throw, finally, exception try...throw Exception...catch Exception...finally... System.DivideByZeroException
Python try, raise, except, finally, exception try...raise Exception...except Exception...finally... ImportError

PHP try, throw, catch, exception try...throw Exception...catch (Exception).. finally... DBException

Objective-C try, catch, throw, finally, exception try...throw Exception...catch Exception...finally... BoxUnderflowException

For the content-based approaches, they try to calculate the
similarity between resources and programming errors in the
IDE [12], [15], [25]-[27]. Seahawk [28], an Eclipse plugin that
supports an integrated and largely automated approach to assist
programmers using Stackoverflow. They import Stackoverflow
documents from the public data dump and build documents
index with the help of Apache Luence and it-idf. Joel Cordeiro
et al. [12] developed a tool that integrates recommendation of
question/answer web resources in Eclipse, according to the
context of these exception stacktrace. The approach performs
better than a simple keyword-based approach. Denzil Correa
et al. [19] conduct approaches based on textual similarly
analysis (content-based linguistic features) and contextual data
analysis (exploited metadata such as tags associated to a S-
tackoverflow question) to recommend Stackoverflow questions
for an incoming programming bug. However, all the above
methods mentioned take only parts of exception contextual
data for similarity calculation. Except for exception name
and stacktrace, there are some other valuable information can
be made use of, such as related source codes or comments
of the discussed exception. Furthermore, without relying on
third party searching engines, there are not approaches trying
to build a cross-domain exception solution recommender,
because of the difficulty to deal with the differences in data
and structures.

Specifically, we conduct an empirical study of Stackover-
flow and GitHub resources. With the help of study, we design
and propose a different approach and construct exception
tree, a structured way to manage the relationship between
exceptions in different programming languages, tags, libraries
and classes. Based on the tree, we propose a unified model that
incorporates exception contextual features to automatically
recommendation. The recommendation problem is treated as
a binary classification problem and solved by Support Vector
Machines(SVM).

III. PROBLEM DEFINITION

In this section, we define the recommendation problem
in a formal way. Let Stackoverflow questions and GitHub
issues represented as unified resource set R. Every sin-
gle exception-related question or issue » € R is a tuple
(i, b, T, CS,., ST, EP,, P.), where i, is the title, b, is the
question or issue body, T, is the tag set which annotates
the question or issue, C'S, and ST, is the code fragments

and stacktrace in the body, E P, is the extracted exception
keywords and P, is the replies.

When an exception is thrown, we collect all possible
exception-related information, called the context of an ex-
ception. Every exception context ¢ can be represented as a
four-tuple (I, ST.,CS., ED,), where l. is the name of the
exception, ST, is the stacktrace, C'S, is the code fragment
which throws the exception and E'D, is comments or descrip-
tion about the exception which can be gathered from codes
comments or user input. Let all possible exception contexts
represented as set C.

As the exception solution problem defined, for each of
Stackoverflow question or GitHub issue r € R, we measure
the relationship between (i,,b,,T;., EP,, P.) with exception
context ¢ € C'. It is worth noting that we take the recommen-
dation problem as a binary classification problem. So the goal
is to find a function f : R x C' — {0,1}, which means for
pair (r,¢) € Rx C, if f (r,c) = 1, then r will recommended
to ¢, others not.

IV. AN EMPIRICAL STUDY OF STACKOVERFLOW AND
GITHUB

In this section, we explore whether the idea of cross-domain
exception solution recommendation with the crowd knowledge
from Stackoverflow and GitHub makes sense empirically. We
propose three research questions and answer them based on
real data extracted from Stackoverflow and GitHub.

A. Dataset

We get Stackoverflow data dump from Stackexchange'
archive. The dump of Stackoverflow contains several data files
in xml format. Among them, Q&A related data is stored in file
posts.xml about 49GB. In order to quickly access, we transfer
and index it to our mongoDB storage. Regards GitHub data,
because there are 5,000 limitation for single IP address access
per day of GitHub Developer API?, we choose another great
GitHub dataset name GHTorrent’ [29] which creates a scalable
offline mirror of data offered through the GitHub REST API.

B. RQI: Why Stackoverflow & GitHub?
Beyond the common understanding we have for Stack-

overflow and GitHub, we would like to know to which

Thttps://archive.org/details/stackexchange
Zhttps:/developer.github.com/v3/
3http://ghtorrent.org/



TABLE II
BASIC DATA ANALYSIS FOR STACKOVERFLOW AND GITHUB DATASET

Stackoverflow Q&As  GitHub Issues

Date Source Stackexchange GHTorrent
Total Quations/Issues 8,052,478 23,606,974
Exception Related Amount 826,185 738,898
Exception Related Rate 10.26% 3.13%
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Fig. 3. Figures for RQ2

extent Stackoverflow and GitHub contains exception-related
resources. If there are enough questions or issues related with
exception on the two communities, it would make sense using
this wealth of information to recommend.

It’s usually difficult to detect whether a question or issue is
exception-related. So we apply several keyword-based filters
for quickly traversal in the large amount of data. As shown
in Table I, we select 8 popular programming languages with
complete exception mechanism. Exception related keywords
also differ according to different programming languages. We
use these keywords and exception paradigms to detect whether
a question or issue is exception-related.

We can see in the Table II. The dump of Stackoverflow
contains 8,052,478 questions. By applying the filters with reg-
ular expression, we obtain exception-related 826,185 Q&As,
10.26% are exception-related in Stackoverflow. At the same
time, GitHub dataset contains 4,878,132 issues, 3.13% are
exception-related. In our point of view, 826,185 and 738,898
are large numbers, validating our intuition that there is a wealth
of information in exception on Stackoverflow and GitHub.

C. RQ2: How suitable for Exception Solve?

We would like to know whether the quality of data from
Stackoverflow and GitHub is able to help solving exception
bugs. We consider that the quality of data handles well when

TABLE III
DISTRIBUTION FOR PROBLEM SOLVING RATE ACCORDING TO
PROGRAMMING LANGUAGES

Stackoverflow GitHub
Language Total Rate Total Rate
Java 183,008 22.2% 79,801 10.8%
Javascript 57,184 6.9% 208,369  28.2%
Ruby 8,636 1.1% 73,151 9.9%
C++ 25,801 3.1% 50,245 6.8%
C# 336,205 40.7% 28,817 3.9%
Python 42,159 5.1% 124,874  16.9%
PHP 48,615 5.9% 89,407 12.1%
Objective-C 10,591 1.3% 32,512 4.4%
others 113,986 13.8% 51,723 7.0%

the post gets enough replies and concerns. At the same
time, the Problem Solving Rate of Stackoverflow questions
and GitHub issues is another important quality indicator. For
Stackoverflow, a question is solved by choosing an best answer
while in GitHub only closing of an issue matters.

In Fig. 3(a) and Fig. 3(b), we can see that most questions in
Stackoverflow get more than 3 answers and are successfully
solved. GitHub issues seem getting more replies but a lower
close rate. One possible reason is that, average reply post
length and amount of information of Stackoverflow answers
is larger than GitHub issues. However, both the Stackoverflow
and GitHub do provide resources with good quality.

D. RQ3: Which are key features?

We show that Stackoverflow and GitHub are suitable for
solving exception bugs. However, in the data of Stackoverflow
and GitHub, there are lots of different information, such as
title, tags, labels, questions body, comments and scores etc.
Let us now discuss discovering the hidden rules and effects
of different information. We try to make a study of following
aspects:

e Programming languages distribution

o Proportion of distribution for natural language and codes
e Score of questions and answers

o Number of tags or labels

Results in Table III shows that, for exception-related data,
both GitHub and Stackoverflow have good coverage for select-
ed 8 popular programming languages. There is only 13.8% and
7.0% other kinds languages and not involved. It is also worth
noting that the method to recognize a programming language
from Stackoverflow Q&A and GitHub issue will be explained
in the following Section V-B about exception tree construction.

Most parts of Stackoverflow Q&As and GitHub issues
are written in natural language like English. However, code
fragments are also used to explain the exception or as a
reference. We consider both codes fragments and stacktrace
as program codes, and then investigate their percentage in
post body. As shown in Fig. 4(a), most questions or issues
have more than 10% code rate in the body. It’s of great
importance to take consideration the program features in our
recommendation.
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Fig. 5. Workflow of the recommendation approach

Fig. 4(b) and Fig. 4(c) study the question score and distribu-
tion of tags number. Only Stackoverflow questions have scores
while GitHub issues not. Most questions take scores in the
range from -10 to 50 which helps quality evaluation. Both for
Stackoverflow and GitHub, there are obvious distribution laws
of tags or labels number. Most resources are tagged round 3
labels. Enough number of tags or labels can help our approach
to identify the linkage between exception contexts.

V. APPROACH

In this section, we will describe the recommendation ap-
proach in detail. There are four main components, namely
Exception Tree Construction, Exception Tree Tagging, Feature
Engineering, and SVM based Exception Solution Recommen-
dation.

A. Approach Overview

We now provide a workflow to explain our whole process,
and the interaction way between different components. For
the recommendation process, as shown in Fig. 5, there are
four main components, namely Exception Tree Construction,
Exception Tree Tagging, Feature Engineering, and SVM based
Exception Solution Recommendation. The input of Exception
Tree Construction is exception-related questions or issues col-
lected from Stackoverflow and GitHub. The method to identify
an exception-related questions is mentioned in Section IV-B.
Exception Tree Construction tries to build an exception tree

Exception Tree

I:l Layer1: Langauges

Layer2: Tags

Layer3: Exceptions

javax.servelet.jsp

SkipPageException

T 1 T 1
Github Issue Stackoverflow QA

T 1
Stackoverflow QA

Fig. 6. Parts of exception tree

with three different layers, including programming languages
layer, community tags layer as well as exceptions layer. Ex-
ception Tree Tagging aims to build linkages between exception
tree and Q&As/issues from Stackoverflow and GitHub.



After tagging process, the crowd resources will be tagged
to exception tree as leaf nodes. With the help of exception
tree and tagging process, we can construct and aggregate
exception-related resources from Stackoverflow and GitHub in
a more effective way, thus will guarantee the scalability and
efficiency of our approach. Next component is Feature Engi-
neering. Based on the results of survey for Stackoverflow and
GitHub in Section IV, we extract features like lexical feature,
program features, community feature and the exception tree
based features. Finally, the exception solution recommendation
is considered as a binary classification problem. Based on the
selected features, we train a supervised learning model with
SVM and solve the recommendation problem.

B. Exception Tree Construction

As shown in the Fig 6, there are three layers of the exception
tree.

1) Layerl Languages: In the Exception Tree, nodes of
programming languages layer connect with the root node.
Based on the survey in Section IV-D, we selected 8 widely
used programming languages in Stackoverflow and GitHub
as our language layer nodes. Every language refers to one
language node. Besides them, we also add an others node,
where all the unrecognized questions or issues will link to.

2) Layer2 Tags: According to the survey in Section IV-D,
almost every question in Stackoverflow and issue in GitHub
will be labeled with several keywords named tags or labels.
Through these artificial tags, resources can be quickly classi-
fied and indexed. However, it’s difficult to analysis associations
between the loose tags. We use our previous work, a taxonomy
about software programming constructed from Stackoverflow
[30] The taxonomy captures hierarchical semantic structures
of tags in Stackoverflow. Based on the taxonomy, we try to
construct the tag layer subtree belonging to every language
layer node. The key parts is the way to identify children nodes
from the taxonomy. As shown in Algorithm 1, we build a
recursive function with depth first traversal.

In the algorithm, we assume that there is a set of n tags in
the taxonomy T = {¢1,...,t,}. The hyponym information is
summarized in an n X n matrix H, where H;; = 1 means t;
is a hyponym of ¢;, Hij = 0 otherwise. Nodes in Exception
Tree are donated by node set Ny = {ny,...,n,}, and edges
set E. e;; € Ep means n; is the children node of n;. We
build the tags layer of exception tree from some selected tags
in the taxonomy, donated by 7™*. And the layerl and layer 2
nodes in the tree are donated by N*. We can eailsy match tags
and nodes by means of the same keywords or synonyms®*. We
define the matching function ¢ : 7" +— N and n : Ny — T™.

3) Layer3 Exceptions: The third layer of exception tree
consists of exceptions extracted from exception-related key-
words Stackoverflow Q&As and GitHub issues. As shown in
Table I, based on the different exception paradigms for dif-
ferent languages, we construct regular expressions and extract
the exception keywords from selected question or issue body .

4The synonyms relations are in http://stackoverflow.com/tags/synonyms

Algorithm 1 Depth First Traversal for Identity Layer 2 Nodes
Input:
Exception Tree Node n;
tte =1 (ny)
: Let hyponym tags of ¢, donated by T},
Ty = {ti S T‘Hik = 1}
: while ¢t € T}, do
n; = (t)
Add n; to Np
Add €ji to F
Alghorithm 1 (n;)
: end while

Extracted exceptions will be added to exception tree as layer 3
nodes, and link to the layer 2 nodes which the tags of selected
question or issue match with function ¢. For exception with the
format like java.lang.NullPointerException, we extract three
keywords java, lang and NullPointerException. Every keyword
would be added as one layer 3 nodes in the exception tree as
well as their relationship.

We donate function 7 which is used to generate layer 3
exception nodes from exception keywords. Function £ is used
to extract the nodes relationships among layer 3 nodes or
relationship between layer 2 and layer 3 nodes. Algorithm 2
shows the construction process.

However, one question or issue may extract more than one
exception keywords which have same prefix. For example,
exceptions jsp.JspTagException and jsp.SkipPageException get
same prefix jsp. For this situation, we let corresponding
exception tree nodes JspTagException and SkipPageException
share same parent node jsp through a combination process.

C. Exception Tree Tagging

After the construction of exception tree, it’s easy to link all
exception-related questions and issues to exception tree nodes.
Based on the exception keywords extracted from the body, we
can built the linkage between resources from Stackoverflow &
GitHub to exception tree. It is also worth noting that we can
achieve the link process during the construction of exception
tree layer 3. As shown in the last line of Algorithm 2, for every
input resource r, we can link r with the exception nodes just
added in exception tree Epp:.

However, there are two problems. (1) One question or issue
may link to more than one exception tree nodes. We will
only link the question or issue to the common subnodes of
all related exception tree nodes. For exception tree nodes like
java and javaEE, we only link to javaEE, because javaEE
is one of the child nodes of java. (2) There are questions or
issues which cannot link to corresponding layer 2 nodes. For
the exceptions nodes extracted of these kind of questions or
issues, we link them to the others node in the layer 1.

D. Feature Engineering

We first extract four kinds of features, then apply a machine
learning algorithm, SVM, to train a model from a ground-
truth data set based on these features. The purpose of feature



Algorithm 2 Algorithm for Identity Layer 3 Nodes
Input:
A Stackoverflow question or GitHub issue r
Exception tree nodes Np and edges F
Output:
Updated tree nodes Np and edges F
Get tags T, for r
Get exceptions EP,. for r
Declare set of nodes to be linked N + ()
while ¢t € T, do
n=(t)
if n is exists then
N« N'+n
end if
end while
if N is empty then
N: — N: + Nothers
12: end if
13: while n € N do
14:  if n is one of the parent of N — n then
15: N+ N —n
16:  end if
17: end while
18: Get combined exceptions L' P
19: NEP;‘ =T (EP:)
20: Egpr =& (Ngps) + & (Ngps, Ny)
21: Ny < Np U N: @] NEP;,‘
22: E< FUFEgp:
23: Link r with Egp:

R A A R ol

_._.
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engineering is to quantitatively characterize the similarities
or relatedness between r and c. We define six features to
characterize the relations. The details of these features are as
follows:

Lexical Feature(LF)

1) Textual Similarity: We measure the textual similarity
between resource r from Stackoverflow and GitHub with
exception context c. All possible parts of r and c, like title,
tags or body etc., will be used to calculate #f-idf and cosine
similarity. 7 and ¢ refers to the corresponding term vector of
r and c:

- =

r-c
Srs = == )]
N ENE

Program Features(PF)

2) Stacktrace and Code Similarity: During exceptions, the
IDE or runtime generally issues notifications from a fixed set
of formatted messages. As a result, there is a great chance
that exception-related questions or issues contain stacktrace or
codes fragments about an exception. Study shows that simhash
is good at measuring the format resouces [31]. We select the
minimum value from the hamming distance between stacktrace
and code fragments as the similarity:

SSS =min (ham (SCSM SCSC) s ham (SSTT; SSTC)) (2)

scs, and scg, are the code fragments extracted from
community resources and exception context. sgr, and Sgr,
are the corresponding exception stacktraces.

3) API Similarity: Generally, it’s difficulty to make a depth
analysis of code similarity without program recognition tech-
nology. Methods like call graph or grammar tree analysis are
very time-consuming and complex. However, the higher usage
of the same types in both community resources and exception
context also shows more potential usefulness of the resources.
With the help of regular expression, we extract the APIs types
P,, P, and calculate the Jaccard Similiarty:

|P. NP,
Sas = o 3)
[P Upel
Community Feature(CF)
4) Q&A Score: As shown in the previous study, the score of
the question also represents quality of resources. We measure
the resource quality for resources from Stackoverflow:

>~ AnswerScore
|Answers|

Sqs = aQuestionScore + )
Generally, the scores from the question and the answers both
reflect the resource quality. We use « and [ as parameters to
distinguish between questions and answers scores proportion.

Exception Tree Features(ETF)

5) Average Exception Tree Path Score: In the graph, two
high correlation points generally have a short path and the
path nodes between two points also have a smaller degrees.
Let the path from node n; to n; in exception tree as P =

{n;,--- ,ny}. We define the weight of the path:
k—1 o (n:)
r'P)= —_— 5
(P) =0 (ng) E degree (n)|7 )

The weight for exception node n:

a,n e Nlayerl
ﬁa ne NlayerQ (6)
o,n e Nlayer3

o(n)=

«, § and o are parameters describing influences of three
different layer nodes. IV, is the set of exception tree nodes
which resource r links to, and N, is the set of nodes existing
in the context c. So we get average exception tree path score
between NV, and N,.:

EniENr ZHJGNCF (Pl )
ZniGNT’ aneNc (1>

(7

Stps =



6) Average Exception Tree Altitude difference: The height
difference of the nodes may also have an effect on the result.
Two nodes with a smaller height difference usually share
more in common. We measure Average Exception Altitude
difference between N, and N.:

ZniEN’r Z’I’LJ‘GNC H@ZghtDfo (ni) n])
ZniENr anENc (1)

Function HeightDiff is used to calculate the altitude
difference between two tree nodes.

®)

Stap =

E. SVM based Exception Solution Recommendation

We treat the recommendation problem as a binary-class
classification problem. And we use SVM algorithm to train
the binary classifier, which is known as one of the best single
classifiers [32]. Generally, classification is kind of supervised
learning process, which requires labeled data for training.
The performance of classification process highly relies on the
quality and distribution of labeled training data.

However, it’s usually difficulty to identify whether a recom-
mended result is truly the right one without strict standards.
Human checking of training data is also very time-consuming.
Luckily, we found an interesting phenomenon in our data
sets. Some successfully closed GitHub issues contains links
to specific solved Stackoverflow questions. We consider that
if one closed GitHub issue or solved Stackoverflow question
have at least one link pointing to the other, then they are
exactly the same solution for one exception context.

Therefore, we can generate the positive training data in
this way. As in our statistics, while there are small amount
of closed issues containing links to solved Stackoverflow
questions, it do provide enough amount of data for training and
testing. Finally, we totally select 3,000 Stackoverflow question
and GitHub issue pairs as our positive training set. For negative
training data, we randomly generated 5,000 data pairs with
lexical similarity less than 0.05. Finally, among the generated
data pairs, we manually selected 2,000 data pairs which are
not related for one exception context. These set are not only
used to boost the learning process but also treated as ground
truth to evaluate our approach in Section VI

VI. EXPERIMENTS

In this section, we first present our experimental settings
and then analyze the experiment results. We totally conduct
two experiments to answer following two questions: (1) How
much does three kinds of features contribute to the model?
(2) How does our cross-domain method perform compared to
existing methods?

A. Experiment Setup

We select two famous software communities, Stackover-
flow and GitHub, to conduct the experiments. As shown
in Section IV-B and Table II, we filter out the exception-
related resources from origin data sets. In total, there are
8,052,478 Stackoverflow questions, 23,606,974 GitHub issues.

Among these resources, 826,185 Stackoverflow questions and
738,898 GitHub issues are exception-related. We totally select
5,000 Stackoverflow question and GitHub issue pairs as our
experiments set. Among them, 3,000 are positive where the
Stackoverflow question and GitHub issue in one pair share the
same solution for one exception context. Other 2,000 pairs are
negative.

B. Evaluation Metrics

Given that our proposed approach is aligned with the
research areas of recommendation system and information
retrieval, we use flowing list of performance metrics from
those areas.

1) Precision: Precision denotes the fraction of retrieved
results that are relevant to the query. We use Precision to
measure the basic contribution and importance of selected
features.

2) Recall: Recall is the fraction of the results that are
relevant to the query that are successfully retrieved. In our
experiments, we consider recall as the percentage of the
exception contexts for which the solutions has been correctly
recommended.

3) F-Score: Often, there is an inverse relationship between
precision and recall. We use F-Score to measure the total
influence of precision and recall.

4) TopN Hits: In the recommendation process, we call a hit
when the correct solution occurs in the top-n recommendation
results. TopN Hits is the total number of hits for all the queries
in the experiment query set.

5) Average Hit Rank: Hit Rank is the rank of hit for
an recommendation query. Average Hit Rank is a statistical
measure that averages the Hit Rank for all the queries.

C. Feature Contribution Analysis

We totally use four kinds of features to train the model,
including lexical feature, abbreviated by LF, program features,
abbreviated by PF, community feature, abbreviated by CF,
and exception tree features, abbreviated by ETF. The first
experiment will show how much the four kinds of different
features donate to classification results. We use the labeled
data generated in Section V-E as the ground truth and selected
5,000 data pairs to validate our method. Among the pairs,
4,000 pairs are selected as training data and the rest 1,000 as
testing data. As shown in Fig. 7, we train eight SVM classi-
fiers with different features or feature combinations by SVM
algorithms and show the results. A 5-fold cross validation is
applied to train the classifiers. Precision, recall, and F-score
are used for effectiveness study.

Fig. 7 illustrates how each feature or feature combination
affects the model. According to the results, model trained with
all features performs great. That is to say, all these features are
useful in predicting new subsumption relations. When only one
kind of feature is concerned, the model trained with exception
tree features reaches the best, with the precision of 56%,
better than those trained with lexical feature or with program
features. When two kinds of features are considered, model
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Fig. 7. Experiment results for different features

trained with exception tree features (LF+ETF or PF+EFT) is
also better than that trained without exception tree features
(LF+PF).

From the results, compared with total text similarity calcu-
lated in lexical feature, program features performs better. This
is because an exception context contains more program related
information which describes exception more accurate like code
fragments or stacktrace than natural language description. It’s
also easy to find that exception tree features are important,
and lexical and program features also have positive contri-
bution to final model. We consider this is mainly because the
information structured in the exception tree is accurate for and
good at describing and locating an exception. Programming
languages, tags, and exceptions play a more important role
in the recommendation than general text description and
programming codes.

However, it’s remarkable that community feature seems
not have an improvement for the results. This is because
community feature including Q&A score concerns more about
quality of the resources rather than the of degree of correlation
with exception context.

D. Comparison with Other Methods

In this experiment, we compare our method with other three
state-of-the-art methods, the Google-based general searching
engine method, the internal searching method in Stackoverflow
and GitHub and the luence-based retrieval method, to solve the
recommendation problem.

The experiment data are selected from pairs of Stackover-
flow question and GitHub issue with related links in Sec-
tion V-E. Among them, we manually choose 200 pairs for the
experiment. Every pair refers to the solution for one exception-
related problem. For every pair, there are two sides including
Stackoverflow question or GitHub issue. We are able to select
one side from the pair as exception context for experiment
input, another side as corresponding correct answer. To be
fair, pairs with each side takes a half. In Google-based general
searching engine method and internal searching method in
Stackoverflow and GitHub, we generate queries based on the

LF+ETF PF+ETF LF+PF+ETF
Proposed Approach | —
Luence pum
Stackoverflow+Github g
Google  ——
50 65 80 95 110 125 140 155

Top20 Hit ®™Topl0 Hit

(a) Total hits
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I
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Stackoverflow+Github  j—
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Top20 Average Rank  ®Top10 Average Rank
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Fig. 8. Experiments results for comparison with other methods

following pattern. Every query is started with ExceptionName
and follows keywords with high frequency keywords. For
Google-based method, we take specific searching techniques’
to limit the results to domain of Stackoverflow or GitHub.
Fig. 8 illustrates the results of comparison. We take care
of the hit number and average rank for top 10 and top 20
recommendation results. In the results, our approach achieve
better than other three methods. In top 10 results, we achieve

5Query like site:stackoverflow.com keywords could limit Google searching
results in Stackoverflow domain



high hit rate 65.5%, while others are below 60%. In top 20
results, while other three methods perform better than top 5,
they are still cannot catch up our approach in hit rate and
average result rank. It’s interesting that, the results from in-
ternal searching of Stackoverflow and GitHub performs lower
than Google. We think this may due to the poor searching and
matching mechanism.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a cross-domain exception solution
recommendation approach. Two famous communities, Stack-
overflow and GitHub, are selected to validate the feasibility
of our method. Differ to the previous methods, based on the
empirical study results, we propose and construct an exception
tree to link cross-domain resources. Exception tree based
features are considered in our SVM training model to help
improve the results. The experiments show the high quality of
our approach.

As for future work, we will try to extract much detail
information about exception into our exception tree, such
as versions of programming languages or external libraries.
Moreover, it would be interesting to enrich our approach with
resources from some other online communities or domains.
User ability and interest analysis in social network could also
help our recommendation.
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