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Abstract—With the trends of developing software on the
Internet, many software crowdsourcing platforms are emerging.
They attract a lot of developers to bid for crowdsourced projects
and develop software systems collaboratively. In this paper,
we present CrowDevBot, a task-oriented conversational bot for
software crowdsourcing platform, that aims to assist online users
in completing crowdsourcing-related tasks in a more natural
manner. The key idea of CrowDevBot is to: (1) combine a rule-
based method and an SVM-NaiveBayes-C4.5 integrated learning
method to discover users’ intention; (2) employ an integrated
CRF (conditional random field) method with novel features
to improve the performance of slot filling; and (3) leverage
a software service knowledge base to unify entity names and
predefine the key slots of user query. We implement CrowDevBot
and integrate it into JointForce, an IT software crowdsourcing
platform in China. To the best of our knowledge, this is the
first time that a task-oriented conversational bot is practically
used in software crowdsourcing platform(s). We evaluated our
approach on real data set from JointForce. The results show
that our intention detecting method achieves F1-score of 87% on
the limited training data. For the slot filling, the F1-score of our
integrated CRF model reaches 82%, 8% higher than that of the
normal CRF model.

Index Terms—Task-oriented conversational bot, software
crowdsourcing platform, integrated statistical learning, user in-
tention understanding

I. INTRODUCTION

Software crowdsourcing [1] is a new software development
paradigm. In a crowdsourcing process, project requesters
and software developers need to complete many tasks, such
as recommending qualified developers, searching and biding
projects, querying project progresses, evaluating service quali-
ties, etc. This paper presents a task-oriented conversational bot
(CrowDevBot) for software crowdsourcing platform. A bot can
assist users in completing their crowdsourcing-related tasks
through conversation, rather than tedious mouse clicks. Thus
it supplements crowdsourcing platforms with strong flexibility.
Figure 1 demonstrates how such a bot helps an engineer to
complete his/her task.

Though developinging bots can benefit crowdsourcing plat-
forms in completing software crowdsourcing tasks in a more
friendly manner, it still faces three challenges:

Challenge 1. How is the cold start problem solved by a task-
oriented conversational bot? Different from online-shopping
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Could you find some qualified developers for me?

What kind of project do you want to crowdsource?

I want to develop a web site.

Do you have any requirements about the 
developers?

They should use java as the developing language and use 
SpringMVC framework.

Here are the list of qualified developers:
1.Gooddeveloper
2.John
......

Fig. 1: An example of using CrowDevBot in crowdsourcing

websites, user interactions on software crowdsourcing plat-
form is much less, which brings the cold-start problem.
Statistical learning models or deep learning models may also
not work well due to limited data.

To solve the cold start problem, several rule-based methods
have been proposed for natural language understanding [2]
[3] [4]. However, rule-based methods usually have following
shortcomings: (1) The accuracy of understanding users’ inten-
tion relies on the quality of rules. (2) User queries are usually
flexible while a pre-defined rule set may not be complete.

Challenge 2. How is the performance of CRF model improved
for user intention understanding?

CRF (Conditional Random Field) is a widely used model for
solving the slot filling problem of user intention understanding.
Researches [5] [6] show that CRF can be a general model,
while many new deep learning models are not [7] [8] [9].

Due to limited training data, the normal CRF is still unsatis-
factory. To improve the slot filling performance of CRF model,
there are two key issues: (1) how to define effective features
according to the characteristics of software crowdsourcing
domain; and (2) how to design an improvement strategy to
achieve a more robust CRF model.

Challenge 3. How can the software service knowledge base
be utilized to enhance the capability of the bot?

Priori knowledge on software crowdsourcing can definitely
enhance the capability of CrowDevBot. Inspired by the work
of Zhao et al. [10], we build a knowledge base to represent
software service knowledge. As far as we know, this is the first
time that a task-oriented conversational bot is practically used



in software crowdsourcing scenario. So it will be challenging
for us to design and leverage the software service knowledge
base in CrowDevBot, to improve its performance.

To address these challenges, we propose a novel approach
to developing CrowDevBot. CrowDevBot consists of five
key components: user intention detecting, slot filling, dia-
log management, task execution, and answer generation. We
combine the rule-based method and a SVM-NaiveBayes-C4.5
integrated learning method to deal with the cold start problem
when detecting user intentions. CrowDevBot adaptively sets
weights for these two methods. For filling slots, we propose an
integrated CRF model with novel features, including syntactic
and semantic features. We also leverage a software service
knowledge base to predefine the key slots of software services
and normalize their entity names. So far, we have integrated
CrowDevBot into JointForce, one of the biggest IT software
crowdsourcing platforms in China. To the best of our knowl-
edge, this is the first time that a task-oriented conversational
bot is used in software crowdsourcing platform.

II. RELATED WORK

Storey and Zagalsky [11] propose that bots can act as
“conduits between users and services, typically through a
conversational UI”. Roughly bots can be divided into two
categories [12] : chat-oriented bots and task-oriented bots.
In recent years some task-oriented conversational bots have
been built both in industry (such as Apple’s Siri, Microsoft’s
Cortana) and in academia (such as those proposed by Zhou et
al. [10], and Wen et al. [13]). Bots are also rapidly becoming
a general interface for software services communication [14].
However, to our best knowledge, few task-oriented conversa-
tional bots have been developed for software crowdsourcing
platforms.

User Intention Detecting. User Intention Detecting is an
important part of task-oriented bots, which can be seen as
a classification problem. Particularly, more and more deep
models are proposed for this purpose. Kim Y et al. [15] first
apply the CNN (convolution neural network) model to solving
these problems. Xu et al. [16] use RNN (recurrent neural
network)) to detect user intentions. Compared to the CNN
model, RNN makes use of the sequence information, making
it fit for natural language problem. However, no matter how
novel the network structure, the performance is poor when
data is limited. It requires bots to handle this problem.

Slot Filling. After user intention is detected, the bot needs
to parse the user input and recognize the predefined key
slots (words to be filled in a sentence). It can be taken as
a named entity recognition problem. Mccallum [5] et al. use
the traditional CRF to solve this problem. Though this model
works, it is unable to handle the OOV problem, i.e., it cannot
recognize an entity which do not appear in the training data.
Thus more novel features need to be designed. Researches
[17] apply deep learning methods on solving this problem.
But as mentioned before, the restrictions on data reduce the
performance of these models.

Cold-Start Problem. When a task-oriented conversational
bot is built, it faces with the potential cold-start problems. The
cold-start problem is serious for the software crowdsourcing
platform as the user data is limited [18]. To solve the cold-
start problem in a universal way, Rieser V et al. [4] focuse on
developing a structured ontology for parsing utterance from
user into predefined semantic slots. Zhao Yan et al. [10]
present a general solution to the cold-start problem in online-
shopping domain. They use crowdsourcing to label training
data, while it is not suitable for our situation as data is limited.

III. APPROACH

A. Approach Overview

Our approach overview is shown in Figure 2. The task-
oriented conversational bot for software crowdsourcing plat-
form, named CrowDevBot, consists of 5 components.

1) User Intention Detecting: Given a user query, CrowDe-
vBot detects the user intentions with a combination method af-
ter entity name unification. A rule-based method and an SVM-
NaiveBayes-C4.5 integrated learning method is combined by
the following strategy: the rule based method is mainly used
in the CrowDevBot’s startup process; with data increases, the
SVM-NaiveBayes-C4.5 integrated learning method becomes
more effective, and thus its weight gets increased.

2) Slot Filling: This component gathers the key information
(called “slot”) from user queries. We design several key fea-
tures (including transition feature, start and end features, word
and syntactic features), and employ integrated CRF model to
fill slots together with probability distribution information to
achieve better precision and robustness.

3) Dialogue Management: In this component, the inter-
action process between user and CrowDevBot is managed.
CrowDevBot uses a FSM (Finite State Machine) to track the
dialogue states. When some slots are missing, it launches new
questions to ask. We utilize the software service knowledge
base (SSKB) to predefine the key slots for software services.
When all of the slots are filled, CrowDevBot invokes task
executing component to execute the task.

4) Task Executing: In this component, the user tasks are
executed: once CrowDevBot has identified user intention
and filled all slots, it will invoke the corresponding APIs
of software crowdsourcing platform and return results to
CrowDevBot.

5) Answer Generation: As all the supporting tasks are clear
and well defined, it can be easy to use a template library
to generate answers. CrowDevBot uses FSM to determine
which template to be used to generate answers or launch new
questions.

Next explains the details of the software service knowledge
base, user intention detecting and slot filling.

B. Software Service Knowledge Base

To leverage the domain knowledge of software crowdsourc-
ing, we build a software service knowledge base (SSKB).
The main data sources of SSKB includes the knowledge
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Fig. 2: A general process of CrowDevBot in processing user queries in a software crowdsourcing platform

collected from software crowdsourcing experts, StackOver-
flow tag synonym system* and Wikipedia†. We apply NLP
technology to extract information from these (semi-)structured
data, and construct SSKB, which contains category system,
technologies, and attributes of software services. For more
details, see our project in github‡.

We exploit SSKE to improve the performance of CrowDe-
vBot in two scenarios. The first scenario is entity name
unification. In the dialogue with CrowDevBot, users tend
to express casually, with various aliases and abbreviations,
leading to decreases in precision of intention detecting and
slot filling. Thus we build a synonym dictionary using entity
synonym attributes in SSKE. During preprocessing, CrowDe-
vBot replaces aliases and abbreviations with standard names.

The second scenario exists in defining slots for software
services. For example, in Figure 1, after CrowDevBot receives
user input “I want to develop a web site”, it maps the query
to the entity “web development” in SSKE. Thus CrowDevBot
continuously asks user about the attributes values of “web
development” to complement the corresponding slots.

C. User Intention Detecting

User intention detecting can be formulated as a user query
classification problem. To solve it, we propose a mixture
method, which combines a rule based method and an SVM-
NaveBayes-C4.5 integrated learning method. Weights are dy-
namically assigned to these two methods. In the startup
process, CrowDevBot relies mainly on the rule based method,
as it requires less usable training data. After sufficient data
is collected, the SVM-NaveBayes-C4.5 integrated learning
method will make more contribution.

1) Rule-Based Method: Each kind of intention corresponds
to a set of query rules that are used to describe the possible
ontology structures of user queries. A rule consists of several

*http://stackoverflow.com/tags/synonyms
†https://www.wikipedia.org
‡https://github.com/SE1405Lab/SSKB

tokens. Each token has 3 attributes: Match pattern, Weight
and Indispensable. Here Match pattern contains its candidate
words, Weight shows the importance of the token to the whole
rule, and Indispensable explains the necessities of a token.

The matching algorithm is designed as Algorithm 1 shows.

Algorithm 1 Greedy rule matching algorithm.

Require: A rule (R) and word list (QL) of user query
Ensure: Matching degree (MD) between the rule and query

1: for each word or parse ∈ QL do
2: for each unmatched tokenT ∈ R do
3: compute the word2vec vector similarity between
w and each word in T.Match pattern, and record the
highest HSw

4: if HS > 0.5 then
5: mark this token as matched token and record

the similarity
6: goto step 1
7: if all tokens in (R.token|R.token.indispensable = 1)

are matched then
8: MD =

∑
a∈matched token tokena.weight×HSa∑

b∈R.token tokenb.weight

9: else
10: MD = 0
11: return MD

2) Integrated Learning Method: CrowDevBot faces with
the cold start problem, making deep learning techniques in-
appropriate to use. Thus we propose an integrated statistical
learning method to train the intention classification model.
We select SVM, Naive Bayes and C4.5 DT as basic models
and combine them following two strategies: Bagging and
AdaBoost.

We design three features after manual analysis on these
wrong detection cases.

• Semantic feature. The feature is produced by POS tag-
ging. The possible values includes noun, adjective, etc.



• N-gram feature. The n-gram feature [19] takes the word
sequence-level information to help analyze a sentence. In
our method, we take N as 3.

• Word2vec feature. The Word2Vec feature [20] represents
words with a low-dimentional vector, which helps under-
stand the semantics of words.

3) Method Combination: The results of these two methods
above are combined with weights:

R =W1R1 +W2R2, (1)

where W1 is the weight of rule-based method, and R1 is the
match degree between user query and each intention; W2 is
the weight of SVM-NaiveBayes-C4.5 method, and R2 is its
probability distribution. The intention with the highest R will
be regarded as the final output.

D. Slot Filling

We use CRF [6] as a basic model to fill the slots, as CRF
achieves better performance than general models (like HMM
[21]). Given the word sequence X = (x1, x2, ..., xm), CRF
computes the conditional probability of a label sequence. It
produces a label y = (y1, y2, ..., ym) sequence to maximize
p(y|x).

p(y|x) = 1

zλ(x)
exp{λ · f(y, x)} (2)

Meanwhile, it is intractable to compute f(y, x). Thus we
assume that the value of f(y, x) depends only on the adjacent
labels and the formula p(y|x) can be converted into

p(y|x) = 1

zλ(x)
exp{

M+1∑
i=1

λ · f(yi−1, yi, x, i)} , (3)

where zλ(x) is a normalization factor, and λ the weight vector
of feature functions. The training process aims to find a proper
λ for the CRF model.

We design several types of features for CRF:
• Transition feature: A transition feature describes the

transition between adjacent labels.
• Start feature: A start feature implies that a label happens

to be at the start position.
• End feature: An end feature implies that a label happens

to be at the end position.
• Word feature: A word feature represents the co-

occurrence of a word and a label.
• Syntactic feature: A syntactic feature represents the co-

occurrence of a POS tag of the word and a label.
• Semantic feature: Inspired by Li et al.’s work [22], we

design the semantic feature using “lexicons”, which are
clusters of semantically-related word or phrase constructs.
A semantic feature describes the co-occurrence of an
element in a lexicon L and a label.

We train several CRF models for each intention and inte-
grate them into one mixture model to fill slots of templates.
After the slot values are obtained, CrowDevBot uses SSKE to
examine whether the key slots are complete and then traces
the states using the FSM.

TABLE I: Intention detecting results w.r.t. different models
Model Precision Recall F1-score

Integrated (Bagging) 0.78 0.85 0.80
Integrated (Boosting) 0.83 0.89 0.83

SVM 0.77 0.81 0.78
Naive Bayes 0.65 0.73 0.68

DT(C4.5) 0.75 0.75 0.75
RNN 0.76 0.82 0.78

TABLE II: Intention detecting results with different methods
Method Precision Recall F1-score

Rule Based 0.90 0.61 0.73
Integrated Learning 0.83 0.89 0.83

Combination 0.90 0.85 0.87

IV. EXPERIMENTS

We evaluate our bot on real data from JointForce.

A. Experiment Setup

Three evaluation metrics are selected: Precision, Recall
and F-1 score. We have collected 1458 user queries from
JointForce§. These queries are classified into 6 categories, in
each of which we picked up 200 queries with slot information
and labeled them manually. We also asked Chinese linguists
to design 65 rules such that our rule-based method can be
applied.

B. Intention Detecting Experiments

We compared the effectiveness of each single statistical
learning model and the integrated model in detecting user
intentions. Due to the small amount of our data, we used
the BootStrapping method to obtain the training and testing
dataset.

The results are shown in Table I. The integrated statistical
learning model (with the Boosting training strategy) achieves
the highest precision and recall. On the contrary, the deep
models are not well supported by a small scale dataset, leading
to lower precision and recall.

Next we compared the effectiveness of the rule based
method, the integrated statistical learning method and the
combination method. The results, as Table II shows, denote
that the combination method is slightly better than the sta-
tistical learning method. The rule-based method achieves a
high precision, indicating the benefits from strictness. The
rule matching algorithm implies that, once the user query is
matched with one rule, it is much possible to be a true positive.

C. Slot Filling Experiments

We analyzed the feature contributions to slot filling, through
an experiment that applys our integrated CRF model with
different feature sets. The result is shown in Table III, where
iCRF represents our integreted CRF model. It demonstrates
that Word Feature (WF) , Transition Feature (TF), Semantic
Feature (SyF) and Syntactic Feature (SyF) contribute a lot to
slot filling, while Start Feature (StF) and End Feature (EF) are
less important. Also we can observe that the F1-score of our

§http://www.jfh.com



TABLE III: Slot filling results with different feature sets
Model Precision Recall F1-score

Normal CRF 0.78 0.71 0.74
iCRF+WF 0.53 0.45 0.49
iCRF+TF 0.38 0.30 0.33
iCRF+EF 0.08 0.04 0.05
iCRF+StF 0.05 0.02 0.03
iCRF+SeF 0.30 0.28 0.29
iCRF+SyF 0.35 0.31 0.33

iCRF+WF+TF 0.63 0.57 0.60
iCRF+WF+TF+EF 0.65 0.58 0.61

iCRF+WF+TF+EF+StF 0.66 0.60 0.63
iCRF+WF+TF+EF+StF+SeF 0.75 0.68 0.71

iCRF+WF+TF+EF+StF+SeF+SyF 0.86 0.78 0.82

TABLE IV: Results of entity name unification
With Entity Name unification Precision Recall F1-score

Yes 0.86 0.78 0.82
No 0.80 0.75 0.77

iCRF model reaches 82%, 8% higher than that of the normal
CRF model.

Besides, in order to evaluate the effectiveness of entity name
unification using SSKB, we performed slot filling with and
without the preprocessing step. The results are shown in Table
IV, which indicate that entity name unification preprocessing
improves the performance of our integrated CRF method on
the slot filling problem. Obviously, the number of words that
are out of vocabulary can be significantly reduced through this
preprocessing step.

V. CONCLUSION

This paper proposed an approach to building a task-oriented
conversational bot (CrowDevBot) for software crowdsourc-
ing platform. Several experiments are conducted to evaluate
our approach and CrowDevBot, using the real data from
JointForce. Experimental results show that the F1-score of
our intention detecting mixture method is 87% under the
limited training data, and the F1-score of our integrated CRF
model with novel features to fill slots is 82%, up to 8
points higher than normal CRF. Also the user satisfaction
ratio of CrowDevBot reaches 87% in average, which indicates
that CrowDevBot really helps online users to finish software
crowdsourcing tasks in real situation.

As for future work, we will leverage the reinforcement
learning technology to improve the performance of our in-
tention detecting and slot filling approach continuously, with
better use of the user feedbacks.
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