
Mining Developer Mailing List to Predict Software Defects

Yu Zhang, Beijun Shen, Yuting Chen
School of Software

Shanghai JiaoTong University
Shanghai, 200240 China

{ruiko, bjshen, chenyt}@sjtu.edu.cn

Abstract—It has been studied that the communication among
software stakeholders can be used to predict potential software
defects. Yet researchers have rarely studied the relations be-
tween the software and the mailing lists of the developers. In
this paper, we research on how to predict software defects by
mining the mailing lists of the software developers. First, we
extract both the structural and the unstructured information
from mailing lists as metrics. The structural information is
calculated through analyzing the social network hidden in the
mailing lists, and the unstructured information is obtained
through taking topical and textual analysis of the lists. Second,
we design a mailing list-based approach to predicting software
defects. We have also analyzed the software repository of sev-
eral open source projects by linking their bug tracking data-
bases to the mailing list archives. The experimental results
provide empirical evidence that the mailing list metrics are
related to software quality and can be used as predictors of
defect-proneness. Furthermore, we found that (1) messages
having certain structures may indicate some defect related files;
(2) the sentiment and some topic-specific mailing models are of
strong correlations with the software defects.

Keywords-defect prediction; mailing list; software repository
mining

I. INTRODUCTION
Communication plays an important role in software de-

velopment and its quality assurance. Software, especially the
open source software (OSS), is usually developed by teams
consisting of a number of individuals ranging from the tens
to the thousands [1]. Thus the better the quality of the
communication among the teams is, the stronger the
collaboration will be and the more possibility of success of
the resulting software will be obtained. In addition,
communication among software stakeholders may indicate
the existence of defects in software and their locations. For
example, Wolf et al. [2] present that some building failures
of a software system can be predicted by taking social
network analysis on the communication among developers.

On the other side, the effect of mailing lists on software
quality is often neglected. Mailing list has become the
primary communication channel for OSS development [3] in
which it serves as the hub for project communication.
However, most researches in the area of communication-
based software assurance get communication data from some
specific or private platforms. To the best of our knowledge,
few researchers take advantages of mailing lists to detect or
predict software defects and investigate their effects on

software quality. For the abundant development
information in mail repository, the mail feature should be a
nice supplement for defect prediction.

In this paper, we research on how to predict software
defects by mining the mailing lists of software developers. In
order to do this, we first link mails to source code and then
explore the relations between the mailing lists and software
defects. In this step, we attempt to answer three research
questions:

RQ1. Are certain specific structures of mailing lists as-
sociated with software defects? The answer is yes. In the
research, Email contents are classified in some categories
and threads of mails are organized in complex structures. We
find that mails having some content structures or thread
structures usually imply the existence of software defects in
some files.

RQ2. Is there any relation between the developers’ sen-
timent and the software quality? In the research, we adopt a
Linguistic Inquiry and Word Count (LIWC) tool to recognize
the developers’ sentiment. Emotional processes can be quan-
tized and calculated by using LIWC and the experimental
result shows that the positive emotions usually lead to few
defects.

RQ3. What concerns of mails are more likely to be
defect-prone? We introduce a topic model to measure the
Emails into some concerns, which are used as the input of
machine learning-based defect prediction. Result shows that
the topic-based metrics are often of a strong correlation with
the defective files.

After conducting several experiments, we also have some
findings with respect to the research questions. These find-
ings help us obtain some metrics about communication
behaviors hidden in the mailing lists. Next, we develop a
mailing list-based approach to predicting software defects.
With a set of mailing list-based metrics and source code, the
approach can be used to indicate which artifacts are defective.
Furthermore, we compare the prediction approach with some
state-of-the-art approaches and make an optimization. By
taking some combinations and optimizations, we improve
the effectiveness of the prediction approach.

The paper is organized as follows. Section 2 discusses
the related work. Section 3 presents the main activities of the
prediction approach. Section 4 presents the case study and
some research findings. Meanwhile some threats to validity
are presented. Section 5 concludes this paper and points out
the future research directions.

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.63

406

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.63

383

II. RELATED WORK

A. Communication and E-Mails
Using data from IBM’s Jazz TM projec

have studied the communication structures
teams with high coordination needs and
importance of communication. One main
IBM’s Jazz TM was limited for extensiv
problem exists in the study of using specific
platform or tools in closed source softwa
software development teams use general e
(emails, instant messaging, or forums) t
Among these means mailing list becomes on
communication channels for an OSS project

Prior work focused on specific aspects o
ing the handling of patches, traceability
networks, et al. Some important characte
have been found, such as the strong relation
level of email activity and the level of activ
code. Moreover, email threads cover a wid
and implementation details are only in a por
Christian Bird et al. [4] have studied how to
networks of email correspondents by m
archives of some OSS projects, and explored
of email activity and commit activity. The
attempts while the research methods are
Bacchelli et al. [5] have dealt with the probl
traceability links between emails and s
created Miler, a tool infrastructure for build
significant benchmark of links between e-
code over six software systems. This work
important foundation for the newcomers
mailing list. Wagstrom et al. [6] have ga
social network data from several sources,
email lists and networking web sites, and bu
their social behavior on the network; the da
construction of a simulation model which
users join and leave projects. On the basis of
we focus on the little studied aspect of mi
mailing lists to predict the existence of softw

B. Defect Prediction
To build defect prediction models, r

investigated different factors in a software sy
fied the ones that are most related to the d
These factors include code complexity,
complexity, semantic dependencies be
modules, organization of the developme
technical aspects of software development, a

In socio-technical aspects, Wolf [2] has p
to predict software failures using social net
developer communication. Developer-modu
organization [8] have also been investiga
studies. Nguyen et al [9] have implement
approach to defect prediction. Topic model h
to measure the concerns in source code whi
as the input for machine learning-based d
models. This approach can be used for refer
the mailing list-based prediction of defects.

ct, Wolf et al. [2]
s of development
d explained the
weakness is that

ve study. Similar
c communication

are. Open source
electronic means
to communicate.
ne of the primary
t.
of emails, includ-
concerns, social

eristics of emails
nship between the
vity in the source

de range of topics
rtion of them [3].
o construct social

mining the email
d the relationship
se are successful

immature now.
lem of recovering
ource code and

ding a statistically
-mail and source
provides with an
to research on

athered empirical
including blogs,

uilt models about
ata was used in a
h describes how
f the above work,
ining developers’

ware defects.

researchers have
ystem and identi-

defect-prone files.
, change/process
etween software
ent team, socio-
and so on.
proposed method
twork analysis on
ule [7] and social
ated in the past
ted a topic-based
has been adopted
ich are then used
defect prediction
rence meaning of

III. PREDICTION A

A. Approach Overview
1) Mining Structur
of Mailing List
2) Performing
LIWC Analysis
3) Taking Topic-
Based Method

Source
Code

Mailing list C. Analyzing
Mailing List

B. Linking E -Mails
and Source Code

Figure. 1. Approach O

In this section, we introduce an
ing lists to predict software defect
approach is shown in Figure. 1. Sec
activity of linking emails and sourc
the prediction. Sections III.C presen
wering the three research question
RQ3), respectively. Sections III.D an
ities of obtaining the mailing list-ba
the defect prediction model, respecti

B. Linking E-Mails and Source Cod
Knowledge can be implicitly

artifacts, such as the documentation
and so on. Since our goal is to stud
lists to predict defective file, it is cru
source code so that the source files
can be directly found and verified by

Figure. 2. Artifact linka

Improved from the schema in
schema (see Figure. 2) is used
implicit group memory. There are
represented in the schema: the bug
(e.g., items in Bugzilla), the sou
checked in a svn source repository),
on developer forums (e.g., newsgr
These artifacts are created by proje
by ‘Developer’ in the figure. Entri
tracking system are a locus because
logical unit of work of the proje
checked into the source repository
mailing list messages often contai
either results in a new entry or relate

There exist a number of m
lightweight methods on the basis o
full-fledged information retrieval m

APPROACH

res D. Obtaining Mailing
List-Based Metrics

E. Producing Defect
Prediction Model

Overview

approach to mining mail-
ts. The workflow of the
ction III.B introduces the
e code as the first step of
nts three activities of ans-
ns (i.e., RQ1, RQ2, and
nd III.E present the activ-
ased metrics and building
ively.

de
expressed in non-code

n, wikis, forums, e-mails,
dy how to use the mailing
ucial to link the lists with
s that are possibly flawed
y exploring the links.

age schema

[10], an artifact linkage
to represent a project's

e three types of artifacts
g and feature descriptions
urce file revisions (e.g.,
, and the messages posted
roups and mailing lists).
ect members, represented
ies in the project's issue-
they typically represent a

ect. Source revisions are
to respond to one entry;
n a discussion item that
es to an existing one.
methods, ranging from
of regular expressions to
method [5], for building

407384

the direct links between the source code and messages. Since
the lightweight linking methods are easy to implement and
their precisions are comparatively high, we adopt a
lightweight linking method which uses regular expressions
about the entity name, case sensitive, and punctuation to fil-
ter the mail content with source code information.

Eg. (.*) (\s|\.|\\|/) <packageTail> (\.|\\|/) < EntityName >
((\.(java|class))|(\s))+ (.*)

C. Analyzing Mailing List
1) Mining Structures of Mailing List: Figure. 3 shows a

message fragment and its structure. On the top part, there
shows an email with two replies. The detail of the original
email in the box is given below, where different icons
represent different contents. RQ1 investigates the
relationship between the structures of mailing lists and the
software defects. Two kinds of structures of mailing list are
defined here: the “content structure” and the “thread
structure”. The former represents the internal composition of
the mail body, and the later represents the external aspect of
the emails. Specially, when investigate the thread structure of
an email, we focus on the structural relationship between the
email and the other emails.

Figure. 3. Message structure

Figure. 4. Network graph about message thread structure

A mail body is usually formed with mixed content, which
can be classified into five categories (i.e., text, junk, code,
patch, and stack trace [11]). Different kinds of compositions
may denote different purposes or effects, so defects may be
discovered by exploring some special content structures. We
use four kinds (i.e., NL text, code, stack trace and other text)
to discover the rule.

On the other hand, a message is often dependent. An
email is usually followed by a thread of replies which carries
about the same issue or share their solutions to one problem.
In addition, the messages sent by the same author during a
short period of time may hold some common features. All
these situations do exist in practice, which drives us to
describe the thread structure of a mailing list at a viewpoint
of network graph. Network graph is widely used in the study
of social software engineering [12, 13]. But it has rarely been
used to represent the relationship among messages. Figure. 4
shows the network graph designed to express the thread
structure of mails. In this figure, each mail can be assigned
with a directed edge from its reply to it. A mail node is
connected with its author node by using an undirected edge
so that the relationship among different threads are shown.
Social Network Analysis provides several network measures
such as degree centrality, closeness centrality, betweenness
centrality, etc. These measures define the characteristics of
each node and thus can be used as the metrics for evaluation.

2) Performing LIWC Analysis: We choose Linguistic
Inquiry and Word Count (LIWC) to perform analysis in or-
der to answer RQ2. LIWC is based on a function of counting
words or particles. However, the semantics of the text may
be lost if we only count the words because word count pro-
grams cannot catch sarcasm, irony, or a given contextual
meaning for words. The LIWC uses a psychometrically-
based dictionary that has been validated by independent
judges and used in a number of experiments by Pennebaker
and others.

Our primary goal is to take the LIWC tool as a predictor
and classifier to understand the intricacies of the software
development. LIWC tool works like this: words like ‘maybe’
are associated with tentativeness and words like ‘important’
are associated with certainty, etc. The LIWC tool simply
counts words that are contained in its dictionary. The
dictionary is grouped into some basic linguistic and
psychometric dimensions with each word belonging to one
or more dimensions. We only use partial function about

408385

psychometric of LIWC to conduct experiment on the
Eclipse’s developer mailing lists, where Emails are taken as
input and output contains the sentiment of the text.

An activity is mainly designed at a viewpoint of the
emotion such that we can check whether the message content
reflects the developer's feelings, either positive or negative. It
is expected that the negative emotions may lead to more
defects hidden in the code. Next, we analyze the empirical
data, identify critical points based on the relationship
between emotional processes and defects, and validate
whether the measures can become a predictor of defects.

3) Taking Topic-Based Method: For investigating RQ3,
we adopt a topic based method to study the concerns of
emails. Automated methods have been extensively studied
in text mining and machine learning area to extract topics
from documents. The basic idea is to discover the latent
structure of document by recognizing the words’ co-
occurrence in the corpus. We collect mails associated with
different parts (i.e., components) of eclipse. There exist some
components-specific concerns in the emails and we find that
some concerns are defect-prone. For example, the topics of
the mail contents are usually similar when the developers
discuss about the potential defects within a component.

Probabilistic topic model contains a series of algorithms
which are designed to discover the hidden topic structure in
the large-scale document. A topic model analyzes the words
in the original text to discover the hidden topics and links
topics to the evolution of themes over time. A generative
model can be used to describe the document and topic. The
so-called generative model denotes that an article is formed
by a process such that every word in an article selects a
certain topic by a certain probability, and selects a certain
word from this topic with a certain probability. So the
probability of each word appearing in it is:

���������	
���� � � �����������	� ������

��	���	
����� (1)

This probability formula can be represented by using a
"document - word" matrix:

where word frequency means the probability of each word to
appear, the "topic-word" matrix represents the probability of
each word to appear in each topic, and the "document-topic"
matrix represents the probability of each topic to appear in
each document. Topic models have one main advantage that
no training data is required when the models are built in
discovering structures from unstructured data. Given
unstructured data we want to explore, what to do is to set
some parameters such as the number of topics. We use LDA
(Latent Dirichlet Allocation) [14], a simple topic model on
the basis of a document composed by a number of topics.
LDA models the documents in the same corpus as generated

by some or all of the given N topics and words in each
document come from the word-topic distribution.

D. Obtaining Mailing List-Based Metrics
 [15] summarizes four studies of historical metrics

including code metric and process metrics:
• Change metrics — Bugs are usually caused by

changes.
• Previous defects — Past defects can predict future

defects.
• Source code metrics — Complex components are

hard to change, and hence error-prone.
• Entropy of changes — Complex changes are more

error-prone than simpler ones.
And two novel source code metrics were defined:
• Churn (Source code metrics) — Source code metrics

are a better approximation of code churn.
• Entropy (Source code metrics) — Source code

metrics better describe the entropy of changes.
For a more comprehensive summary of metrics, [17] de-

fines four categories of metrics: code-related metrics,
process-related metrics, organizational metrics, and
geographical metrics. Network metrics belongs to the catego-
ry of organizational metrics, which denotes that the networks
between developers and modules can be analyzed for
predicting failures. The idea is similar to our design of thread
structure of mails, but our metrics from other research
methods cannot be classified into this type. We adopt the
next metrics as social tech metrics:

• Mail Content Metrics (MCM) — Special type of
content predict future defects.

• Mail Network Metrics (MNM) — Key emails about
communication among core developers may link to
more defective files.

• Emotion Metrics (EM) — Mails with passive
emotion may indicate potential defects.

• Topic-based Metrics (TM) — Particular topics of
mail text can indicate defect-prone files.

MCM and MNM are designed from RQ1, EM and TM
are designed from RQ2 and RQ3 respectively. It is noted that
whether these metrics are available is determined according
to the answers to the research questions. The precise mean-
ings of these metrics are confirmed in our study.

E. Producing Defect Prediction Model
We adopt a regression model to examine the relationship

between the mail related metrics and the post-release bugs.
The independent variables (used in the prediction) are the set
of metrics for each class, while the dependent variable (the
predicted one) denotes that whether a class is defective or not
with respect to the number of post-release defects. Principal
component analysis is employed to avoid the problem of
multicollinearity among the independent variables.

For comparison and evaluation, we generalize the linear
regression model [15], the regression tree model (M5P) [9],
and the logistic regression model [16] to predict defects.
Results in [15] are served as the benchmark to evaluate the
predictive factor of the new model. Since social tech metrics

409386

are not discussed in [15], another benchmark in [16] which
takes social tech metrics in prediction model is selected for
comparison. We also adopt the 10-fold cross-validation
strategy in the study, i.e., 90% of the dataset is used to build
the prediction model, and the others to evaluate the accuracy
of the model.

IV. CASE STUDY

A. Process
Our case study is performed in four phases: data

collection, data analysis, validation and defect prediction.
Figure. 5 shows the overall process of the case study.

mail ing l ist / mai lman

source code / svn

bug data / bugzil la

mail
#
o
o
o
o
o

id
author
date
content
component
parent

Integer
Characters (256)
Date
Text
Characters (256)
Integer

output

Prediction Model

Benchmark Predictive Effect

Figure. 5. Process of case study

• Data collection: Data set in our research is collected
from several components of eclipse whose mailing
lists are managed by Mailman. Mailman provides a
web page view. We use a Java library called HTML
Parser to parse HTML code, in order to collect the
mails from web pages. Then all messages are
recorded by its corresponding author, date, and
module. Next, these emails are linked to their related
files/classes by the lightweight method and filtrated.
From table I, we can see that the link rate is not high,
ranges between 13.9%~19.8%. We conducted an ex-
tra manual sampling so that the error link rate is 0%,
the missing link rate is less than 5% and the correct
rate is achieved.

TABLE I. INFORMATION OF DATA SETS

Component Number
of Mails

Mails been
Linked

Link
Rate Description

jdt-dev 751 117 15.6% Eclipse JDT gener-
al developers list

jwt-dev 1644 231 13.9% Java Workflow
Tool developers list

eclipse-dev 9807 1944 19.8%
General develop-

ment mailing list of
Eclipse project

• Data analysis: This phase includes three analysis
activities explained in Section 3. And three methods
are designed to answer the three research questions.

• Validation: The output in the previous phase is a set
of files which are predicted to be defective. In this
phase we verify the correctness of the result by
comparing the predictive defective files to the actual
defective files (Eclipse bug data is offered by Zeller).

• Defect prediction: After validation, research
questions are answered and hence, the mailing lists-
related social tech metrics and prediction model can
be constructed. Then a prediction can be carried out
to obtain the predictive effects with the benchmarks.

B. Findings
RQ1. Are certain specific structures of mailing lists

associated with software defects? Table II shows the results
as correlation between content structure and defects. In our
experiments, two kinds of content structures are chosen,
including code text and stack trace text. Both of the two
kinds of text are likely related to bugs, because in most of the
emails, the author adds codes or stack trace texts to show the
problem in the project. Then the problem may turn into a
new bug. In the table, the rate of each kind of content is
simply worked out by calculating lines of text. Top ten
emails of the rate ranking are selected to analyze. From the
result table, it can be seen that emails with high rate of code
lines are always linked to files with bug, so are the emails
with high rate of stack trace lines.

TABLE II. DEFECTIVE RATE OF TOP TEN SPECIFIC MAIL STRUCTURES

Compo-
nent

Code
Text
Rate

Defec-
tive
Rate

Stack Trac-
ing Text

Rate

Defec-
tive
Rate

Average
Defective

Rate
jdt-dev 71.3% 70% 47.1% 80% 35.0%
jwt-dev 68.2% 60% 40.5% 60% 24.9%

eclipse-dev 64.7% 70% 44.7% 70% 21.5%

We apply network graph analysis to study the thread
structure of emails. For each component, we create a
network graph which contains emails in a specific period.
Through a series of evaluation, we select betweenness
centrality measure to describe the result. It equals to the
number of shortest paths from all vertices to all others that
pass through that node. The measure is given by the formula:

 ���� � �
���� �

���
!" "� (2)

where #!� is the total number of shortest paths from node s to
node t and #!���� is the number of those paths that pass
through � . The betweenness centrality of all nodes is
calculated and then the author nodes are discarded because
emails are linked to source files with a uniform method.
Emails are sorted by their betweenness centrality, where we
retrieve the top ten emails in each component (see Table III).
By calculating the rate of defective files linked from top ten
emails, we find that in most instances, emails in network
graph with high betweenness centrality have the highest
probability of linking to the defective files.

410387

TABLE III. DEFECTIVE RATE OF TOP TEN CENTRALITY EMAILS

Component
Average

Betweenness
Centrality

Defective
Rate of File

Average Defec-
tive Rate

jdt-dev 0.47 60% 35.0%
jwt-dev 0.52 50% 24.9%

eclipse-dev 0.62 70% 21.5%

The answer to RQ1 is yes according to the result. Defects

are related to some specific structures of mailing lists,
including both the content and the thread structures. For the
former, developers write different kinds of email contents for
different purposes, and code and stack tracing text, especially
the stack tracing lines, always relate to program bugs and
problems. For the latter, betweenness centrality denotes that
the possibility of the case that one node is passed by the
shortest path connecting another two nodes. Thus a node
with high centrality is more important. These key nodes are
defect-prone in that they have more influence on the whole
systems. On the other hand, more serious problems are
concerned by more developers. Above all, the structures of
mailing lists reflect the characteristic of emails and specific
structures certainly indicate defects.

RQ2. Is there any relation between the developers’
sentiment and the software quality? The use of the LIWC
tool is not difficult. Table IV shows the analysis result of an
email using the tool. We concentrate on the “Positive
emotions” and the “Negative emotions” in the result table
since the experiment is carried out on the basis of the emo-
tions. By taking a great deal of measurement, it indicates that
the value of the positive emotions is larger than that of the
negative ones. Thus we assign a threshold to judge whether a
particular text is positive or not. The threshold value is as-
signed by analyzing the results of the formal texts and the
existing mailing lists.

Table V shows the result of the study on the research
question 2. We compare the differences between positive
emotion and negative emotions with the threshold value
(which is 2 in experiment). It can be seen that the emails
whose emotion difference value is larger than the threshold
value tend to be linked with less defective files and those
whose emotion value is less than threshold value tend to be
linked with more defective files.

TABLE IV. LIWC TOOL OUTPUT

LIWC Dimension Your
Data

Personal
Texts

Formal
Texts

Self-references (I, me, my) 0.00 11.4 4.2
Social words 5.04 9.5 8.0

Positive emotions 4.20 2.7 2.6
Negative emotions 0.00 2.6 1.6
Articles (a, an, the) 9.24 5.0 7.2

Big words (> 6 letters) 38.66 13.1 19.6

TABLE V. DEFECTIVE RATE OF EMAILS WITH DIFFERENT EMOTIONS

Component Defective Rate below
Threshold

Defective Rate above
Threshold

jdt-dev 70% 20%
jwt-dev 70% 10%

eclipse-dev 60% 20%

We can answer research RQ2 now. There exist some
relations between developers’ sentiment and software
quality. However, the conclusion is not always correct and
sometimes the result is volatile in our experiments. The
reasons for these problems are various. First, nature language
may not be simply analyzed using a tool and a developer
may not only express one feeling in her mail. Second, some
key words or variable names in code such as ‘if’, ‘new’ can
have some influence on the result. However, the final results
prove that emotion and defects are relative.

RQ3. What concerns of mails are more likely to be
defect-prone? This question is answered by a topic model
which can tell us the concerns of emails. In LDA, topics are
collections of words that co-occur frequently in the corpus.
Table VI shows five topics extracted from the Eclipse JDT
mailing list contents. Each column entry presents a topic and
its top 10 words which are of the highest co-occurrence
frequencies. It can be seen that topic has its own concern.
However, this point is not very obvious in table VI, which
will be discussed later.

For each email, non-standard use of some word in it
should be processed by splitting or removing. After pre-
processing, each email is represented as a collection of words
and the system is represented by a collection of emails. We
apply the LDA topic-modeling technique on that collection
with a number of topics K = 5, a number of iterations R = 50,
and two hyper parameters (�= 0.5 and �= 0.1). Using the
discovered structure, emails can be linked through the topics
assigned to [9], and the result provides with the numbers of
words assigned for each of the topics in each email. We take
them as the topic-based metrics.
 We calculated the correlation between the topic-based
metrics and the defective rate of the files linked by emails.
As Table VII shows, it is obvious that high defective rate
indicates high correlation. It can be seen that the topic-based
metrics have correlations with the number of bugs at
different levels. Specifically, T3 has a quite high correlation
while T1 has a much lower one. This suggests that topic T3
is more defect-prone than T1, i.e. in general, source files
related to T3 are more probably to be defective than those
related to T1. From topic 3, we can find that it is concerned
about source code and bug in this component. We
hypothesize that, in Eclipse JDT, bug discussion topic (T4) is
more defect-prone. In this way the third research question
can be answered.

TABLE VI. DEFECTIVE RATE OF MAILS WITH DIFFERENT EMOTIONS

Rank Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
1 java mailing jdt eclipse java
2 working class compiler completion code
3 problem version method point line
4 annotation find public work project
5 extends jdt-core-

dev
change type files

6 variable default bug create jdt-core-
dev

7 time context source build extension
8 list classpath error void file
9 functionality support code way core

10 args respond default static found

411388

TABLE VII. CORRELATION OF TOPIC-BASED METRICS AND DEFECTS

Component T1 T2 T3 T4 T5
Number of Defective File 4 8 13 7 9

Defective Rate of Files 0.10 0.20 0.32 0.17 0.22

The experiment confirms the hypothesis that the

components-specific concerns obtained from emails correlate
to the defect-proneness of source files at different levels.
However, it is not clear that how the topic-based metrics can
be used to predict bugs. Although five topics are extracted
from the jdt mailing lists, it is difficult to say what they are
concerned about. On the other words, the five topics are
difficult to distinguish. One possible reason for this is that
after linking of the mails to source files, only a small number
of mails are left and they have something in common. Thus a
sensitive method for analyzing the topic model is necessary
in future.

C. Application and Evaluation
All the three aforementioned methods for analyzing

mailing lists generate some metrics to predict defects. Here
we obtain these metrics to predict defects and evaluate the
predictive capability and effectiveness.

1) Extraction of Metrics: The first step is to extract the
metrics. Four types of metrics have been prepared. After
analyzing the results in the last section, we adopt the metrics
shown in Table VIII.

TABLE VIII. DEFINITIONS AND TYPE OF METRICS

Metric Definition Type
LOCM Line of Code in Mail Mail Content

Metrics
(MCM)

LOSTM Line of Stack Trace in Mail
ROCM Rate of Code in Mail

ROSTM Rate of Stack Trace in Mail
DCOM Degree Centrality of Mail Network Mail Network

Metrics
(MNM) BCOM Betweenness centrality of Mail Net-

work
ESOM Emotion sum of Mail Emotion Me-

trics (EM) EDOM Emotion difference of Mail

TM1~TM5 Top Five Topic-based Metrics Topic-based
Metrics (TM)

LOCM and LOSTM can be obtained by counting the

lines of the content. ROCM and ROSTM are calculated
through dividing the total lines of content by the lines of the
content. DCOM denotes the degree centrality of a vertex v,
for a given graph G:=(V, E) with |V| vertices and |E| edges,
DCOM equals to deg (v). BCOM is defined in Section III.B.
ESOM and EDOM represent the sum and difference of
Positive emotions and Negative emotions values,
respectively. TM1~TM5 is the similarity of topics of each
email text with T1~T5. T1~T5 is the five topics extracted
from all of the Eclipse JDT mailing list contents by LDA.

2) Measures for Evaluation: We choose 91 adjacent
versions of eclipse to conduct our experiment. IR measures:
precision (��$%�

��$%��&��'%�
), recall (��$%�

��$%�&��'(�
) and f-measure

()* � +,�-.��!��/,-.�011

��-.��!��/�2�-.�011
) are used to evaluate the prediction

result. TP (true positives) is a set of the defective files

correctly predicted. The set FN (false negatives) contains the
defective files not predicted, while FP (false positives) links
normal files presented as the defective ones. Spearman corre-
lation is used to evaluate the predictive capability. It is a ro-
bust technique that can be applied even when the association
between the measures is non-linear [8]. The Spearman corre-
lation is computed on two lists (classes ordered by the actual
number of bugs and those by the number of predicted bugs)
and is an indicator of the similarity of their order.

3) Experimental Results: For comparison and
evaluation, the paper established linear regression model and
logistic regression model respectively. The linear regression
model is represented by formula)�3453+5 637� � 89 &
� 8� , 3�
7
�:4 , the function)�3453+5 637� in which means

the situation of defects. Then a logistic regression equation
���;� � *<�* & �;��=)�3453+5637�� is used for
mapping the range of linear regression function to the
domain probability values [0,1].

In Table IX, the left part shows the predictive capability
of the model via Spearman correlation between the predicted
and actual numbers of bugs in [15]. The right part shows the
result, which is low when using each metric alone. Moreover,
result with combination of metrics is lower than the best
result achieved using the past approaches. In the last line, the
combination of the metrics in Table VIII and some past
metrics gains the best result. Predictors do not involve the
social-based metrics in [15], and thus we choose [16] to take
a comparison. In table X, the above part presents the
prediction results obtaining using social network metrics [16].
Relatively, our combined metrics show the result with IR
measures.

TABLE IX. PREDICTION RESULTS AND COMPARISON PART1

Predictor Spearman Predictor Spearman
Change metrics 0.381 MCM 0.432

Bug metrics 0.434 MNM 0.416
Code metrics 0.395 EM 0.428

History of Complexity
metrics 0.416 TM 0.389

Churn of code metrics 0.442
Entropy of code me-

trics 0.425 Our best combina-
tion 0.437

Their best combination 0.448 Best combination 0.526

TABLE X. PREDICTION RESULTS AND COMPARISON PART2

Research Metric Type Precision Recall F-measure

Social Net-
work

Dependency 0.789 0.625 0.697
Contribution 0.764 0.688 0.724
Combined 0.754 0.708 0.730

Socio-technical 0.753 0.761 0.757

Mailing List

MCM 0.804 0.781 0.792
MNM 0.763 0.746 0.754
EM 0.775 0.762 0.768
TM 0.713 0.748 0.730

Combined 0.831 0.812 0.821

In summary, compared with some state-of-the-art
approaches, our approach has the higher predictive capability
in some aspects and achieves better result after combination.
This suggests that, mail-related metrics are useful to be
predictors of defect-proneness. On the other hand, we can

412389

learn that the predictive effect is not exciting when using our
email related metrics alone, but the model can be improved
after taking some combination.

It is remarkable that the predictive effects can be differ-
ent when the different email-related metrics are adopted.
Considering that we only use the data from jdt-dev in
prediction model and ignore the data from jwt-dev and
eclipse-dev, the results are not obvious. But it is clear that the
structural metrics provide better effects of prediction than the
unstructured metrics. Unstructured text is the main part of
emails and it contains more information. So it is expected to
get better results from the unstructured information. The idea
that taking unstructured text into consideration is affirmed,
but the methods adopted should be improved, especially the
topic model analysis method. The number of the topic and
ranked words need to be obtained carefully and the definition
of the topic metrics be adjusted. In summary, the results of
defect prediction can be further improved.

D. Threats to Validity
In our design, we only analyze the files which are linked

by the mailing lists. Since the number of mails that can be
linked to some files may only be a small portion of all of the
mails, it is noted that only a small part of emails are left after
linking. It denotes that some defective files will be neglected
during this phase. The recall must be influenced for this rea-
son. On the other hand, our results are only valid for the
eclipse project and may not be generalized to some other
projects. Studies need to be further conducted in order to
validate the results.

V. CONCLUSION
This paper has shown our exploration of the relationship

between communication and software quality and of predic-
tion of software defects through mining mailing lists. To
reach this goal, we use a lightweight approach to linking
mails collected from eclipse community to the corresponding
source code. Then we apply three methods to analyze mails
to investigate the effects of some metrics derived from mail-
ing lists. We also make use of these metrics to predict the
existence of defects in software.

Our results show that the developers’ mailing lists may
indicate software defects in some respects. First, software
defects may be correlated with some specific structures of
mailing lists. Second, developers’ sentiment may relate to
software quality. Third, Emails with some concerns are more
likely to be defect-prone. Some metrics extracted from mail-
ing lists can also be used to improve the prediction model.

Our future work is to improve the efficiency of mail
analysis methods, such as the topic-based prediction method.
Another future work is to evaluate and justify the approach
using some large-scale software systems and taking empiri-
cal studies.

ACKNOWLEDGMENT
Beijun Shen is the corresponding author. This research is

supported by 973 Program in China (Grant No.
2015CB352203) and National Natural Science Foundation of
China (Grant No. 61472242, 91118004, 61100051).

REFERENCES
[1] Nachiappan Nagappan, Brendan Murphy, Victor Basili, “The

influence of organization structure on software quality: an empirical
case study,” Proc. Intl Conf. on Soft. Engineering (ICSE 08), ACM,
May. 2008, pp. 521-530, doi:10.1145/1368088.1368160.

[2] Timo Wolf, Adrian Schroter, Daniela Damian, Thanh Nguyen,
“Predicting Build Failures using Social Network Analysis on
Developer Communication,” Proc. Intl Conf. on Soft. Engineering
(ICSE 09), IEEE, May. 2009, pp. 1-11, doi:10.1109/ISSRE.2009.17.

[3] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, Arie
van Deursen, “Communication in Open Source Software
Development Mailing List,” Proc. Mining Soft. Repositories (MSR
13), IEEE, May. 2013, pp.277-286, doi:10.1109/MSR.2013.6624039.

[4] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, Anand
Swaminathan, “Mining email social networks,” Proc. Mining Soft.
Repositories (MSR 06), ACM, May. 2006, pp. 137-143
doi:10.1145/1137983.1138016.

[5] Alberto Bacchelli, Michele Lanza, Romain Robbes, “Linking e-mails
and source code artifacts,” Proc. Intl Conf. on Soft. Engineering
(ICSE 10), May. 2010, pp.375-384, doi: 10.1145/1806799. 1806855.

[6] P. A.Wagstrom, J. D.Herbsleb, K.Carley. “A social network approach
to free/open source software simulation.” Proc. Intl Conf. on Open
Source Systems (OSS 05), Jul. 2005, pp. 16-23, doi:10.1.1.178.4984.

[7] Martin Pinzger, Nachiappan Nagappan, Brendan Murphy, “Can
Developer-Module Networks Predict Failures?” Proc. Intl Symp. on
Foundations of Soft. engineering (SIGSOFT/FSE 08), ACM, Nov.
2008, pp. 2-12, doi:10.1145/1453101.1453105.

[8] Bettenburg, A.E. Hassan, “Studying the Impact of Social Structures
on Software Quality,” Proc. Intl Conf. on Program Comprehension
(ICPC 10), IEEE, Jun. 2010, pp. 124-133, doi:10.1109/ICPC.2010.46.

[9] Tung Thanh Nguyen, Tien N. Nguyen, Tu Minh Phuong, “Topic-
based Defect Prediction (NIER Track),” Proc. Intl Conf. on Soft.
Engineering (ICSE 11), IEEE, May. 2011, pp. 932-935, doi:
10.1145/1985793.1985950.

[10] Bikram Sengupta, Satish Chandra, Vibha Sinha, “Hipikat:
Recommending Pertinent Software Development Artifacts,” Proc. Intl
Conf. on Soft. Engineering (ICSE 06), IEEE, May. 2006, pp.408-418,
doi: 10.1109/ICSE.2003.1201219.

[11] Alberto Bacchelli, Tommaso Dal Sasso, Marco D’Ambros, Michele
Lanza, “Content Classification of Development Emails,” Proc. Intl
Conf. on Soft. Engineering (ICSE 12), IEEE, Jun. 2012, pp. 375-385,
doi:10.1109/ICSE.2012.6227177.

[12] Navid Ahmadi, Mehdi Jazayeri, Francesco Lelli, Sasa Nesic, “A
Survey of Social Software Engineering,” Proc. Intl Conf. on
Automated Soft. Engineering (ASE/KBSE 08), IEEE, Sept. 2008, pp.
1-12, doi: 10.1109/ASEW.2008.4686304.

[13] Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, Michalis
Faloutsos, “Graph-Based Analysis and Prediction for Software
Evolution,” Proc. Intl Conf. on Soft. Engineering (ICSE 12), IEEE,
Jun. 2012, pp. 419-429, doi: 10.1109/ICSE.2012.6227173.

[14] Stacy K. Lukins, Nicholas A. Kraft, Letha H. Etzkorn, “Source Code
Retrieval for Bug Localization using Latent Dirichlet Allocation,”
Proc. Working Conference on Reverse Engineering (WCRE 08),
IEEE, Oct. 2008, pp. 155-164, doi:10.1109/WCRE.2008.33.

[15] M. D’Ambros, M. Lanza, R. Robbes, “An extensive comparison of
bug prediction approaches,” Proc. Mining Soft. Repositories (MSR
10), IEEE, May. 2010, pp. 31-41, doi:10.1109/MSR.2010.5463279.

[16] Christian Bird, Nachiappan Nagappan, Harald Gall Brendan Murphy,
Premkumar Devanbu, “Putting It All Together: Using Socio-technical
Networks to Predict Failures,” Proc. Intl Symp. on Soft. Reliability
Engineering (ISSRE 09), IEEE, Nov. 2009, pp. 109-119,
doi:10.1109/ISSRE.2009.17.

[17] Hideaki Hata, Osamu Mizuno, Tohru Kikuno, “Bug prediction based
on fine-grained module histories,” Proc. Intl Conf. on Soft.
Engineering (ICSE 12), IEEE, Jun. 2012, pp. 200-210,
doi:10.1109/ICSE.2012.6227193.

413390

