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Abstract—It has been studied that the communication among 
software stakeholders can be used to predict potential software 
defects. Yet researchers have rarely studied the relations be-
tween the software and the mailing lists of the developers. In 
this paper, we research on how to predict software defects by 
mining the mailing lists of the software developers. First, we 
extract both the structural and the unstructured information 
from mailing lists as metrics. The structural information is 
calculated through analyzing the social network hidden in the 
mailing lists, and the unstructured information is obtained 
through taking topical and textual analysis of the lists. Second, 
we design a mailing list-based approach to predicting software 
defects. We have also analyzed the software repository of sev-
eral open source projects by linking their bug tracking data-
bases to the mailing list archives. The experimental results 
provide empirical evidence that the mailing list metrics are 
related to software quality and can be used as predictors of 
defect-proneness. Furthermore, we found that (1) messages 
having certain structures may indicate some defect related files; 
(2) the sentiment and some topic-specific mailing models are of 
strong correlations with the software defects. 

Keywords-defect prediction; mailing list; software repository 
mining 

I. INTRODUCTION 
Communication plays an important role in software de-

velopment and its quality assurance. Software, especially the 
open source software (OSS), is usually developed by teams 
consisting of a number of individuals ranging from the tens 
to the thousands [1]. Thus the better the quality of the 
communication among the teams is, the stronger the 
collaboration will be and the more possibility of success of 
the resulting software will be obtained. In addition, 
communication among software stakeholders may indicate 
the existence of defects in software and their locations. For 
example, Wolf et al. [2] present that some building failures 
of a software system can be predicted by taking social 
network analysis on the communication among developers. 

On the other side, the effect of mailing lists on software 
quality is often neglected.  Mailing list has become the 
primary communication channel for OSS development [3] in 
which it serves as the hub for project communication. 
However, most researches in the area of communication-
based software assurance get communication data from some 
specific or private platforms. To the best of our knowledge, 
few researchers take advantages of mailing lists to detect or 
predict software defects and investigate their effects on 

software quality.  For the abundant  development 
information in mail repository, the mail feature should be a 
nice supplement for defect prediction. 

In this paper, we research on how to predict software 
defects by mining the mailing lists of software developers. In 
order to do this, we first link mails to source code and then 
explore the relations between the mailing lists and software 
defects. In this step, we attempt to answer three research 
questions: 

RQ1. Are certain specific structures of mailing lists as-
sociated with software defects? The answer is yes. In the 
research, Email contents are classified in some categories 
and threads of mails are organized in complex structures. We 
find that mails having some content structures or thread 
structures usually imply the existence of software defects in 
some files.  

RQ2. Is there any relation between the developers’ sen-
timent and the software quality? In the research, we adopt a 
Linguistic Inquiry and Word Count (LIWC) tool to recognize 
the developers’ sentiment. Emotional processes can be quan-
tized and calculated by using LIWC and the experimental 
result shows that the positive emotions usually lead to few 
defects. 

RQ3. What concerns of mails are more likely to be 
defect-prone? We introduce a topic model to measure the 
Emails into some concerns, which are used as the input of 
machine learning-based defect prediction. Result shows that 
the topic-based metrics are often of a strong correlation with 
the defective files. 

After conducting several experiments, we also have some 
findings with respect to the research questions. These find-
ings help us obtain some metrics about communication 
behaviors hidden in the mailing lists. Next, we develop a 
mailing list-based approach to predicting software defects. 
With a set of mailing list-based metrics and source code, the 
approach can be used to indicate which artifacts are defective. 
Furthermore, we compare the prediction approach with some 
state-of-the-art approaches and make an optimization. By 
taking some combinations and optimizations, we improve 
the effectiveness of the prediction approach. 

The paper is organized as follows. Section 2 discusses 
the related work. Section 3 presents the main activities of the 
prediction approach. Section 4 presents the case study and 
some research findings. Meanwhile some threats to validity 
are presented. Section 5 concludes this paper and points out 
the future research directions. 
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the direct links between the source code and messages. Since 
the lightweight linking methods are easy to implement and 
their precisions are comparatively high, we adopt a 
lightweight linking method which uses regular expressions 
about the entity name, case sensitive, and punctuation to fil-
ter the mail content with source code information. 

Eg. (.*) (\s|\.|\\|/) <packageTail> (\.|\\|/) < EntityName > 
((\.(java|class))|(\s))+ (.*) 

C. Analyzing Mailing List 
1) Mining Structures of Mailing List: Figure. 3 shows a 

message fragment and its structure. On the top part, there 
shows an email with two replies. The detail of the original 
email in the box is given below, where different icons 
represent different contents. RQ1 investigates the 
relationship between the structures of mailing lists and the 
software defects. Two kinds of structures of mailing list are 
defined here: the “content structure” and the “thread 
structure”. The former represents the internal composition of 
the mail body, and the later represents the external aspect of 
the emails. Specially, when investigate the thread structure of 
an email, we focus on the structural relationship between the 
email and the other emails. 

 

Figure. 3. Message structure 

 

Figure. 4. Network graph about message thread structure 

A mail body is usually formed with mixed content, which 
can be classified into five categories (i.e., text, junk, code, 
patch, and stack trace [11]). Different kinds of compositions 
may denote different purposes or effects, so defects may be 
discovered by exploring some special content structures. We 
use four kinds (i.e., NL text, code, stack trace and other text) 
to discover the rule. 

On the other hand, a message is often dependent. An 
email is usually followed by a thread of replies which carries 
about the same issue or share their solutions to one problem. 
In addition, the messages sent by the same author during a 
short period of time may hold some common features. All 
these situations do exist in practice, which drives us to 
describe the thread structure of a mailing list at a viewpoint 
of network graph. Network graph is widely used in the study 
of social software engineering [12, 13]. But it has rarely been 
used to represent the relationship among messages. Figure. 4 
shows the network graph designed to express the thread 
structure of mails. In this figure, each mail can be assigned 
with a directed edge from its reply to it. A mail node is 
connected with its author node by using an undirected edge 
so that the relationship among different threads are shown. 
Social Network Analysis provides several network measures 
such as degree centrality, closeness centrality, betweenness 
centrality, etc. These measures define the characteristics of 
each node and thus can be used as the metrics for evaluation. 

2) Performing LIWC Analysis: We choose Linguistic 
Inquiry and Word Count (LIWC) to perform analysis in or-
der to answer RQ2. LIWC is based on a function of counting 
words or particles. However, the semantics of the text may 
be lost if we only count the words because word count pro-
grams cannot catch sarcasm, irony, or a given contextual 
meaning for words. The LIWC uses a psychometrically-
based dictionary that has been validated by independent 
judges and used in a number of experiments by Pennebaker 
and others. 

Our primary goal is to take the LIWC tool as a predictor 
and classifier to understand the intricacies of the software 
development. LIWC tool works like this: words like ‘maybe’ 
are associated with tentativeness and words like ‘important’ 
are associated with certainty, etc. The LIWC tool simply 
counts words that are contained in its dictionary. The 
dictionary is grouped into some basic linguistic and 
psychometric dimensions with each word belonging to one 
or more dimensions. We only use partial function about 
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psychometric of LIWC to conduct experiment on the 
Eclipse’s developer mailing lists, where Emails are taken as 
input and output contains the sentiment of the text.  

An activity is mainly designed at a viewpoint of the 
emotion such that we can check whether the message content 
reflects the developer's feelings, either positive or negative. It 
is expected that the negative emotions may lead to more 
defects hidden in the code. Next, we analyze the empirical 
data, identify critical points based on the relationship 
between emotional processes and defects, and validate 
whether the measures can become a predictor of defects. 

3) Taking Topic-Based Method: For investigating RQ3, 
we adopt a topic based method to study the concerns of 
emails. Automated methods have been  extensively studied 
in text mining and machine learning area to extract topics 
from documents. The basic idea is to discover the latent 
structure of document by recognizing the words’ co-
occurrence in the corpus. We collect mails associated with 
different parts (i.e., components) of eclipse. There exist some 
components-specific concerns in the emails and we find that 
some concerns are defect-prone. For example, the topics of 
the mail contents are usually similar when the developers 
discuss about the potential defects within a component. 

Probabilistic topic model contains a series of algorithms 
which are designed to discover the hidden topic structure in 
the large-scale document. A topic model analyzes the words 
in the original text to discover the hidden topics and links 
topics to the evolution of themes over time. A generative 
model can be used to describe the document and topic. The 
so-called generative model denotes that an article is formed 
by a process such that every word in an article selects a 
certain topic by a certain probability, and selects a certain 
word from this topic with a certain probability. So the 
probability of each word appearing in it is: 

���������	
���� � � �����������	� ������

��������������������������������������������������	���	
����� (1) 

This probability formula can be represented by using a 
"document - word" matrix: 

  
where word frequency means the probability of each word to 
appear, the "topic-word" matrix represents the probability of 
each word to appear in each topic, and the "document-topic" 
matrix represents the probability of each topic to appear in 
each document. Topic models have one main advantage that 
no training data is required when the models are built in 
discovering structures from unstructured data. Given 
unstructured data we want to explore, what to do is to set 
some parameters such as the number of topics. We use LDA 
(Latent Dirichlet Allocation) [14], a simple topic model on 
the basis of a document composed by a number of topics. 
LDA models the documents in the same corpus as generated 

by some or all of the given N topics and words in each 
document come from the word-topic distribution. 

D. Obtaining Mailing List-Based Metrics 
 [15] summarizes four studies of historical metrics 

including code metric and process metrics: 
• Change metrics — Bugs are usually caused by 

changes. 
• Previous defects — Past defects can predict future 

defects. 
• Source code metrics — Complex components are 

hard to change, and hence error-prone. 
• Entropy of changes — Complex changes are more 

error-prone than simpler ones. 
And two novel source code metrics were defined: 
• Churn (Source code metrics) — Source code metrics 

are a better approximation of code churn. 
• Entropy (Source code metrics) — Source code 

metrics better describe the entropy of changes. 
For a more comprehensive summary of metrics, [17] de-

fines four categories of metrics: code-related metrics, 
process-related metrics, organizational metrics, and 
geographical metrics. Network metrics belongs to the catego-
ry of organizational metrics, which denotes that the networks 
between developers and modules can be analyzed for 
predicting failures. The idea is similar to our design of thread 
structure of mails, but our metrics from other research 
methods cannot be classified into this type. We adopt the 
next metrics as social tech metrics: 

• Mail Content Metrics (MCM) — Special type of 
content predict future defects. 

• Mail Network Metrics (MNM) — Key emails about 
communication among core developers may link to 
more defective files. 

• Emotion Metrics (EM) — Mails with passive 
emotion may indicate potential defects. 

• Topic-based Metrics (TM) — Particular topics of 
mail text can indicate defect-prone files. 

MCM and MNM are designed from RQ1, EM and TM 
are designed from RQ2 and RQ3 respectively. It is noted that 
whether these metrics are available is determined according 
to the answers to the research questions. The precise mean-
ings of these metrics are confirmed in our study. 

E. Producing Defect Prediction Model 
We adopt a regression model to examine the relationship 

between the mail related metrics and the post-release bugs. 
The independent variables (used in the prediction) are the set 
of metrics for each class, while the dependent variable (the 
predicted one) denotes that whether a class is defective or not 
with respect to the number of post-release defects. Principal 
component analysis is employed to avoid the problem of 
multicollinearity among the independent variables. 

For comparison and evaluation, we generalize the linear 
regression model [15], the regression tree model (M5P) [9], 
and the logistic regression model [16] to predict defects. 
Results in [15] are served as the benchmark to evaluate the 
predictive factor of the new model. Since social tech metrics 
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are not discussed in [15], another benchmark in [16] which 
takes social tech metrics in prediction model is selected for 
comparison. We also adopt the 10-fold cross-validation 
strategy in the study, i.e., 90% of the dataset is used to build 
the prediction model, and the others to evaluate the accuracy 
of the model. 

IV. CASE STUDY 

A. Process 
Our case study is performed in four phases: data 

collection, data analysis,  validation and defect prediction. 
Figure. 5 shows the overall process of the case study. 

mail ing l ist / mai lman

source code / svn

bug data / bugzil la

mail
#
o
o
o
o
o

id
author
date
content
component
parent

Integer
Characters (256)
Date
Text
Characters (256)
Integer

output

Prediction Model

Benchmark Predictive Effect  

Figure. 5. Process of case study 

• Data collection: Data set in our research is collected 
from several components of eclipse whose mailing 
lists are managed by Mailman. Mailman provides a 
web page view. We use a Java library called HTML 
Parser to parse HTML code, in order to collect the 
mails from web pages. Then all messages are 
recorded by its corresponding author, date, and 
module. Next, these emails are linked to their related 
files/classes by the lightweight method and filtrated. 
From table I, we can see that the link rate is not high, 
ranges between 13.9%~19.8%. We conducted an ex-
tra manual sampling so that the error link rate is 0%, 
the missing link rate is less than 5% and the correct 
rate is achieved. 

TABLE I.  INFORMATION OF DATA SETS 

Component Number 
of Mails 

Mails been 
Linked 

Link 
Rate Description 

jdt-dev 751 117 15.6% Eclipse JDT gener-
al developers list 

jwt-dev 1644 231 13.9% Java Workflow 
Tool developers list 

eclipse-dev 9807 1944 19.8% 
General develop-

ment mailing list of 
Eclipse project 

• Data analysis: This phase includes three analysis 
activities explained in Section 3. And three methods 
are designed to answer the three research questions. 

• Validation: The output in the previous phase is a set 
of files which are predicted to be defective. In this 
phase we verify the correctness of the result by 
comparing the predictive defective files to the actual 
defective files (Eclipse bug data is offered by Zeller). 

• Defect prediction: After validation, research 
questions are answered and hence, the mailing lists-
related social tech metrics and prediction model can 
be constructed. Then a prediction can be carried out 
to obtain the predictive effects with the benchmarks. 

B. Findings 
RQ1. Are certain specific structures of mailing lists 

associated with software defects? Table II shows the results 
as correlation between content structure and defects. In our 
experiments, two kinds of content structures are chosen, 
including code text and stack trace text. Both of the two 
kinds of text are likely related to bugs, because in most of the 
emails, the author adds codes or stack trace texts to show the 
problem in the project. Then the problem may turn into a 
new bug. In the table, the rate of each kind of content is 
simply worked out by calculating lines of text. Top ten 
emails of the rate ranking are selected to analyze. From the 
result table, it can be seen that emails with high rate of code 
lines are always linked to files with bug, so are the emails 
with high rate of stack trace lines. 

TABLE II.  DEFECTIVE RATE OF TOP TEN SPECIFIC MAIL STRUCTURES 

Compo-
nent 

Code 
Text 
Rate 

Defec-
tive 
Rate 

Stack Trac-
ing Text 

Rate 

Defec-
tive 
Rate 

Average 
Defective 

Rate 
jdt-dev 71.3% 70% 47.1% 80% 35.0% 
jwt-dev 68.2% 60% 40.5% 60% 24.9% 

eclipse-dev 64.7% 70% 44.7% 70% 21.5% 

  
We apply network graph analysis to study the thread 
structure of emails. For each component, we create a 
network graph which contains emails in a specific period. 
Through a series of evaluation, we select betweenness 
centrality measure to describe the result. It equals to the 
number of shortest paths from all vertices to all others that 
pass through that node. The measure is given by the formula: 

   ���� � �
���� �

���
!" "�   (2) 

where #!�  is the total number of shortest paths from node s to 
node t and #!���� is the number of those paths that pass 
through � . The betweenness centrality of all nodes is 
calculated and then the author nodes are discarded because 
emails are linked to source files with a uniform method. 
Emails are sorted by their betweenness centrality, where we 
retrieve the top ten emails in each component (see Table III). 
By calculating the rate of defective files linked from top ten 
emails, we find that in most instances, emails in network 
graph with high betweenness centrality have the highest 
probability of linking to the defective files.  
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TABLE III.  DEFECTIVE RATE OF TOP TEN CENTRALITY EMAILS 

Component 
Average 

Betweenness 
Centrality 

Defective 
Rate of File 

Average Defec-
tive Rate 

jdt-dev 0.47 60% 35.0% 
jwt-dev 0.52 50% 24.9% 

eclipse-dev 0.62 70% 21.5% 
 
The answer to RQ1 is yes according to the result. Defects 

are related to some specific structures of mailing lists, 
including both the content and the thread structures. For the 
former, developers write different kinds of email contents for 
different purposes, and code and stack tracing text, especially 
the stack tracing lines, always relate to program bugs and 
problems. For the latter, betweenness centrality denotes that 
the possibility of the case that one node is passed by the 
shortest path connecting another two nodes. Thus a node 
with high centrality is more important. These key nodes are 
defect-prone in that they have more influence on the whole 
systems. On the other hand, more serious problems are 
concerned by more developers. Above all, the structures of 
mailing lists reflect the characteristic of emails and specific 
structures certainly indicate defects. 

RQ2. Is there any relation between the developers’ 
sentiment and the software quality? The use of the LIWC 
tool is not difficult. Table IV shows the analysis result of an 
email using the tool. We concentrate on the “Positive 
emotions” and the “Negative emotions” in the result table 
since the experiment is carried out on the basis of the emo-
tions. By taking a great deal of measurement, it indicates that 
the value of the positive emotions is larger than that of the 
negative ones. Thus we assign a threshold to judge whether a 
particular text is positive or not. The threshold value is as-
signed by analyzing the results of the formal texts and the 
existing mailing lists. 

Table V shows the result of the study on the research 
question 2. We compare the differences between positive 
emotion and negative emotions with the threshold value 
(which is 2 in experiment). It can be seen that the emails 
whose emotion difference value is larger than the threshold 
value tend to be linked with less defective files and those 
whose emotion value is less than threshold value tend to be 
linked with more defective files. 

TABLE IV.  LIWC TOOL OUTPUT 

LIWC Dimension Your 
Data 

Personal 
Texts 

Formal 
Texts 

Self-references (I, me, my) 0.00 11.4 4.2 
Social words 5.04 9.5 8.0 

Positive emotions 4.20 2.7 2.6 
Negative emotions 0.00 2.6 1.6 
Articles (a, an, the) 9.24 5.0 7.2 

Big words (> 6 letters) 38.66 13.1 19.6 

TABLE V.  DEFECTIVE RATE OF EMAILS WITH DIFFERENT EMOTIONS 

Component Defective Rate below 
Threshold 

Defective Rate above 
Threshold 

jdt-dev 70% 20% 
jwt-dev 70% 10% 

eclipse-dev 60% 20% 

We can answer research RQ2 now. There exist some 
relations between developers’ sentiment  and software 
quality. However, the conclusion is not always correct and 
sometimes the result is volatile in our experiments. The 
reasons for these problems are various. First, nature language 
may not be simply analyzed using a tool and a developer 
may not only express one feeling in her mail. Second, some 
key words or variable names in code such as ‘if’, ‘new’ can 
have some influence on the result. However, the final results 
prove that emotion and defects are relative. 

RQ3. What concerns of mails are more likely to be 
defect-prone? This question is answered by a topic model 
which can tell us the concerns of emails. In LDA, topics are 
collections of words that co-occur frequently in the corpus. 
Table VI shows five topics extracted from the Eclipse JDT 
mailing list contents. Each column entry presents a topic and 
its top 10 words which are of the highest co-occurrence 
frequencies. It can be seen that topic has its own concern. 
However, this point is not very obvious in table VI, which 
will be discussed later. 

For each email, non-standard use of some word in it 
should be processed by splitting or removing. After pre-
processing, each email is represented as a collection of words 
and the system is represented by a collection of emails. We 
apply the LDA topic-modeling technique on that collection 
with a number of topics K = 5, a number of iterations R = 50, 
and two hyper parameters (�= 0.5 and �= 0.1). Using the 
discovered structure, emails can be linked through the topics 
assigned to [9], and the result provides with the numbers of 
words assigned for each of the topics in each email. We take 
them as the topic-based metrics. 
 We calculated the correlation between the topic-based 
metrics and the defective rate of the files linked by emails. 
As Table VII shows, it is obvious that high defective rate 
indicates high correlation. It can be seen that the topic-based 
metrics have correlations with the number of bugs at 
different levels. Specifically, T3 has a quite high correlation 
while T1 has a much lower one. This suggests that topic T3 
is more defect-prone than T1, i.e. in general, source files 
related to T3 are more probably to be defective than those 
related to T1. From topic 3, we can find that it is concerned 
about source code and bug in this component. We 
hypothesize that, in Eclipse JDT, bug discussion topic (T4) is 
more defect-prone. In this way the third research question 
can be answered. 

TABLE VI.  DEFECTIVE RATE OF MAILS WITH DIFFERENT EMOTIONS 

Rank Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 
1 java mailing jdt eclipse java 
2 working class compiler completion code 
3 problem version method point line 
4 annotation find public work project 
5 extends jdt-core- 

dev 
change type files 

6 variable default bug create jdt-core- 
dev 

7 time context source build extension 
8 list classpath error void file 
9 functionality support code way core 

10 args respond default static found 
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TABLE VII.  CORRELATION OF TOPIC-BASED METRICS AND DEFECTS 

Component T1 T2 T3 T4 T5 
Number of Defective File 4 8 13 7 9 

Defective Rate of Files 0.10 0.20 0.32 0.17 0.22 
 
The experiment confirms the hypothesis that the 

components-specific concerns obtained from emails correlate 
to the defect-proneness of source files at different levels. 
However, it is not clear that how the topic-based metrics can 
be used to predict bugs. Although five topics are extracted 
from the jdt mailing lists, it is difficult to say what they are 
concerned about. On the other words, the five topics are 
difficult to distinguish. One possible reason for this is that 
after linking of the mails to source files, only a small number 
of mails are left and they have something in common. Thus a 
sensitive method for analyzing the topic model is necessary 
in future. 

C. Application and Evaluation  
All the three aforementioned methods for analyzing 

mailing lists generate some metrics to predict defects. Here 
we obtain these metrics to predict defects and evaluate the 
predictive capability and effectiveness. 

1) Extraction of Metrics: The first step is to extract the 
metrics. Four types of metrics have been prepared. After 
analyzing the results in the last section, we adopt  the metrics 
shown  in Table VIII. 

TABLE VIII.  DEFINITIONS AND TYPE OF METRICS 

Metric Definition Type 
LOCM Line of Code in Mail Mail Content 

Metrics 
(MCM) 

LOSTM Line of Stack Trace in Mail 
ROCM Rate of Code in Mail 

ROSTM Rate of Stack Trace in Mail 
DCOM Degree Centrality of Mail Network Mail Network 

Metrics 
(MNM) BCOM Betweenness centrality of Mail Net-

work 
ESOM Emotion sum of Mail Emotion Me-

trics (EM) EDOM Emotion difference of Mail 

TM1~TM5 Top Five Topic-based Metrics Topic-based 
Metrics (TM) 

 
LOCM and LOSTM can be obtained by counting the 

lines of the content. ROCM and ROSTM are calculated 
through dividing the total lines of content by the lines of the 
content. DCOM denotes the degree centrality of a vertex v, 
for a given graph G:=(V, E)  with |V| vertices and |E| edges, 
DCOM equals to deg (v). BCOM is defined in Section III.B. 
ESOM and EDOM represent the sum and difference of 
Positive emotions and Negative emotions values, 
respectively. TM1~TM5 is the similarity of topics of each 
email text with T1~T5. T1~T5 is the five topics extracted 
from all of the Eclipse JDT mailing list contents by LDA.  

2) Measures for Evaluation: We choose 91 adjacent 
versions of eclipse to conduct our experiment. IR measures: 
precision ( ��$%�

��$%��&��'%�
), recall ( ��$%�

��$%�&��'(�
) and f-measure 

()* � +,�-.��!��/,-.�011

��-.��!��/�2�-.�011
) are used to evaluate the prediction 

result. TP (true positives) is a set of the defective files 

correctly predicted. The set FN (false negatives) contains the 
defective files not predicted, while FP (false positives) links 
normal files presented as the defective ones. Spearman corre-
lation is used to evaluate the predictive capability. It is a ro-
bust technique that can be applied even when the association 
between the measures is non-linear [8]. The Spearman corre-
lation is computed on two lists (classes ordered by the actual 
number of bugs and those by the number of predicted bugs) 
and is an indicator of the similarity of their order. 

3) Experimental Results: For comparison and 
evaluation, the paper established linear regression model and 
logistic regression model respectively. The linear regression 
model is represented by formula )�3453+5 637� � 89 &
� 8� , 3�
7
�:4 , the function )�3453+5 637� in which means 

the situation of defects. Then a logistic regression equation 
���;� � *<�* & �;��=)�3453+5637��  is used for 
mapping the range of linear regression function  to the 
domain probability values [0,1]. 

In Table IX, the left part shows the predictive capability 
of the model via Spearman correlation between the predicted 
and actual numbers of bugs in [15]. The right part shows the 
result, which is low when using each metric alone. Moreover, 
result with combination of metrics is lower than the best 
result achieved using the past approaches. In the last line, the 
combination of the metrics in Table VIII and some past 
metrics gains the best result. Predictors do not involve the 
social-based metrics in [15], and thus we choose [16] to take 
a comparison. In table X, the above part presents the 
prediction results obtaining using social network metrics [16]. 
Relatively, our combined metrics show the result with IR 
measures. 

TABLE IX.  PREDICTION RESULTS AND COMPARISON PART1 

Predictor Spearman Predictor Spearman 
Change metrics 0.381 MCM 0.432 

Bug metrics 0.434 MNM 0.416 
Code metrics 0.395 EM 0.428 

History of Complexity 
metrics 0.416 TM 0.389 

Churn of code metrics 0.442   
Entropy of code me-

trics 0.425 Our best combina-
tion 0.437 

Their best combination 0.448 Best combination 0.526 

TABLE X.  PREDICTION RESULTS AND COMPARISON PART2 

Research Metric Type Precision Recall F-measure 

Social Net-
work 

Dependency 0.789 0.625 0.697 
Contribution 0.764 0.688 0.724 
Combined 0.754 0.708 0.730 

Socio-technical 0.753 0.761 0.757 

Mailing List 

MCM 0.804 0.781 0.792 
MNM 0.763 0.746 0.754 
EM 0.775 0.762 0.768 
TM 0.713 0.748 0.730 

Combined 0.831 0.812 0.821 

In summary, compared with some state-of-the-art 
approaches, our approach has the higher predictive capability 
in some aspects and achieves better result after combination. 
This suggests that, mail-related metrics are useful to be 
predictors of defect-proneness. On the other hand, we can 
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learn that the predictive effect is not exciting when using our 
email related metrics alone, but the model can be improved 
after taking some combination. 

It is remarkable that the predictive effects can be differ-
ent when the different email-related metrics are adopted. 
Considering that we only use the data from jdt-dev in 
prediction model and ignore the data from jwt-dev and 
eclipse-dev, the results are not obvious. But it is clear that the 
structural metrics provide better effects of prediction than the 
unstructured metrics. Unstructured text is the main part of 
emails and it contains more information. So it is expected to 
get better results from the unstructured information. The idea 
that taking unstructured text into consideration is affirmed, 
but the methods adopted should be improved, especially the 
topic model analysis method. The number of the topic and 
ranked words need to be obtained carefully and the definition 
of the topic metrics be adjusted. In summary, the results of 
defect prediction can be further improved. 

D. Threats to Validity 
In our design, we only analyze the files which are linked 

by the mailing lists. Since the number of mails that can be 
linked to some files may only be a small portion of all of the 
mails, it is noted that only a small part of emails are left after 
linking. It denotes that some defective files will be neglected 
during this phase. The recall must be influenced for this rea-
son. On the other hand, our results are only valid for the 
eclipse project and may not be generalized to some other 
projects. Studies need to be further conducted in order to 
validate the results. 

V. CONCLUSION 
This paper has shown our exploration of the relationship 

between communication and software quality and of predic-
tion of software defects through mining mailing lists. To 
reach this goal, we use a lightweight approach to linking 
mails collected from eclipse community to the corresponding 
source code. Then we apply three methods to analyze mails 
to investigate the effects of some metrics derived from mail-
ing lists. We also make use of these metrics to predict the 
existence of defects in software. 

Our results show that the developers’ mailing lists may 
indicate software defects in some respects. First, software 
defects may be correlated with some specific structures of 
mailing lists. Second, developers’ sentiment may relate to 
software quality. Third, Emails with some concerns are more 
likely to be defect-prone. Some metrics extracted from mail-
ing lists can also be used to improve the prediction model. 

Our future work is to improve the efficiency of mail 
analysis methods, such as the topic-based prediction method. 
Another future work is to evaluate and justify the approach 
using some large-scale software systems and taking empiri-
cal studies. 
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