
ESSE: An Early Software Size Estimation Method Based
on Auto-extracted Requirements Features

Cheng Zhang1, Shensi Tong1, Wenkai Mo1, Yang Zhou1, Yong Xia2, Beijun Shen1

1School of Software, Shanghai Jiao Tong University, Shanghai 200240, China.
2IBM Client Innovation Center China, Shanghai 200433, China.

bjshen@sjtu.edu.cn

ABSTRACT
Software size estimation is a crucial step in project manage-
ment. According to the Standish Chaos Report, 65% of soft-
ware projects are over budget or deadline; therefore, a good
size estimation method is very important. However, existing
estimation methods are complicated and human-effort con-
suming. In many industrial projects, project technical lead-
s (PTLs) do not use these methods but just give a rough
estimation based on their experience. To decrease human
effort, we propose an early software size estimation (ESSE)
method, which can extract semantic features from natural
language requirements automatically, and build size estima-
tion models for project. Firstly, ESSE makes a two-level
semantic analysis of requirements specification documents
by information extraction and activation spreading. Then,
complexity-related features are extracted from the results of
semantic analysis. Finally, a size estimation model is trained
to predict size of new projects by regression algorithms. Ex-
periments in real industrial datasets show that our method
is effective and can be applied to real industrial projects.

CCS Concepts
•Computing methodologies → Information extrac-
tion; Feature selection; •General and reference → Esti-
mation; •Software and its engineering → Requirements
analysis;

Keywords
Semantic Analysis, Requirements Analysis, Software Size
Estimation.

1. INTRODUCTION
It is important to predict how much size will be required

for a software project as early as possible. Underestimation
is one of the main problems that impact the success of soft-
ware projects. Meanwhile, if size of a software project can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Internetware ’16, September 18 2016, Beijing, China
c© 2016 ACM. ISBN 978-1-4503-4829-4/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2993717.2993733

be estimated in early phase, project technical leads (PTL-
s) can make a better plan. Usually, traditional software
development consists of four main stages: requirements elic-
itation, design, coding and testing. Most size estimation
methods have a good estimation after design. If estimation
could be finished directly after requirements elicitation, it
can positively affect project management. Precise early size
estimation is critical not only in traditional software devel-
opment, but also in agile development, as it makes projects
more manageable for the parts, where requirements are less
volatile.

However, most existing automatic estimation methods [1][2]
only make simple word-counting analysis of requirements
specification documents (RSD) rather than semantic anal-
ysis. Besides, there are also many learning-based size esti-
mation methods [3][4], but these methods focus on learning
algorithms and ignore requirements analysis. It will make
estimation more accurate if requirements semantic analysis
and a proper learning algorithm are integrated together.

In this paper, we propose an early software size estima-
tion method (ESSE) based on requirements semantic anal-
ysis and machine learning. Specifically, our method consists
of three steps: (1) Entity extraction from requirement spec-
ification. (2) Complexity-related features extraction from
extracted entities. (3) Construction and application of size
estimation model. Finally, experiments using real data from
industrial and commercial projects show that our method is
directly applicable.

Contributions of this paper are: (1) We propose a unified
early software size estimation method that integrates nat-
ural language processing and machine learning techniques
and it achieves superior estimation results. (2) We pro-
pose a two-level requirements semantic analysis algorithm to
extract complexity-related features from requirements. (3)
With complexity-related features and size drivers, regres-
sion models for size estimation are then constructed from
historical data to predict a new project size.

2. METHODOLOGY
Fig.1 illustrates the overview of early software size esti-

mation method we proposed. Firstly, ESSE processes each
requirement in a requirement specification document (RSD)
using chunk-level semantic analysis technology, and extract-
s a five-tuple entity. Further, ESSE extracts local features
and global features to make word-level semantic analysis.
And then, using these features, size drivers and real sizes
of historical project data, the size estimation model can be
established by regression algorithms. Finally, ESSE can es-

Size
Estimation
Model

Size
Drivers

Size of
New Project

Real
Sizes

Estimation Model
Construction

Size
Estimation

Size Estimation Model Training
Using Historical Project Data

New Project Size Estimation

Entity
Extraction

Feature
Extraction

Global & Local
Features

Size
Drivers

Requirements
of Historical
Projects

Requirements
of New
Project

Figure 1: The Overview of Early Software Size Estimation Method.

timate the size of a new project using this size estimation
model.

2.1 Entity Extraction
The chunk-level requirements semantic analysis is to do

semantic chunking to each requirement in a requirements
specification document for size estimation features extrac-
tion. For each requirement in a RSD, a five-tuple:

(User,Action,Object, ActionProperty, Condition)
will be extracted. User is the executor of the require-

ment, Action is usually verbs in the requirement describing
actions executed by User, Object is the object of Action,
ActionProperty is the characteristic of Action, such as how
to do the action, and Condition is the precondition or post-
condition of Action. For any five-tuple, User, Action and
Objection are necessary, whileActionProperty and Condition
are optional. These five entities are integrated into one mod-
el. We apply a sequential labeling algorithm to ESSE, called
Conditional Random Fields (CRFs) [5], to train a model
from historical data for extracting these entities from new
data.

In the entity extraction step, input features are extracted
from two levels, one is the word sequences of a requirement
and the other is the corresponding Part-Of-Speech (POS)
tagging sequences of the word sequences. We use the uni-
gram word with POS features and bigram word with POS
features in ESSE, which is called template in CRF++. A
group of word level features we use are W−2, W−1, W0,
W+1, W+2, W−1W0 and W0W+1, where W stands for a
word, index 0 indicates the current word in focus and indices
−n/+n indicate the nth word to the left/right of the curren-
t word. Similarly, an example group of POS level features
is POS−2, POS−1, POS0, POS+1, POS+2, POS−1POS0

and POS0POS+1. Label for each word is yi ∈ {B, I} ×
{User,Action,Object, ActionProperty, Condition}, for B−
t are beginning words of tuple element t and I − t are inner
words of tuple element t.

2.2 Feature Extraction
After extraction of 5-tuple entity, complexity-related fea-

tures can be extracted to train a size estimation model. For

each requirement in a RSD, we extract two kinds of features:
Global Features and Local Features.

Global Features. Global features are a kind of coarse-
grained features extracted from the whole RSD, which re-
flect the complexity of the system involved in the document.
All requirements in a RSD share the same global features.
Totally five global features are extracted: (1) the number of
requirements; (2) the number of unique nouns in the RSD;
(3) the number of unique nouns in the Object fields of all
requirements; (4) the number of user categories in the User
fields of all requirements; and (5) the number of unique ac-
tions in the Action fields of all requirements.

Local Features. Compared to global features, local fea-
tures aim at measuring the complexity of a RSD. Totally,
there are five kinds of local features: (1) the number of u-
nique nouns in the requirement; (2) the number of unique
nouns in the Object field of the requirement; (3) whether
the ActionProperty in the five-tuple of the requirement is
null; (4) whether the Condition in the five-tuple of the re-
quirement is null; and (5) a semantic vector of the Action
field. We consider verbs are more suitable to be vectorized
than nouns. However, verbs in different projects are almost
the same, we use Bag-Of-Words (BOW) [6] in ESSE to rep-
resent Action of a requirement. But only extracting BOW
to represent Action of a requirement will lead to a sparse
representation problem.

A word-level semantic analysis is proposed to solve these
problems by introducing a new data structure - WordNet1.
To utilize WordNet, we apply a propagation-based technique
to solve the sparsity problem in ESSE.

Inputs of spreading activation are a similarity matrix S,
where each element si,j in S is the similarity between actioni

and actionj , and the initial state of actions, denoted by A.
During the process of spreading activation, for each action in
A, in one iteration, it propagates its weight to other actions
with corresponding similarities. To apply this technique, the
most important step is to construct the similarity matrix in
which each element is the similarity between two actions.
We propose Synonym Similarity Matrix (SSM) and Part-of

1https://wordnet.princeton.edu/

Similarity Matrix (PSM).
Because WordNet provides synonym relations between com-

mon words, synonym similarity matrix can be constructed
from it. SSM can be constructed from WordNet synonym
relations and to retain more meaning of actions, for each
word, we assign a higher weighted value to its self-connected
edge. Supposing there are |Sw| synonyms of word w, we re-
place the self-connected weight of it (the SSMw,w element
in SSM) from 1 to |Sw|. Different from synonym relations,
part-of relations are asymmetric, and thus PSM is asym-
metric. Next, we construct PSM for manually constructed
part-of relations. If word u is part-of v, then in the matrix,
PSMu,v is set as α and PSMv,u as β. In our experiment
setting, we set α = 0.4 and β = 0.2 by results of parameters
tuning.

After obtaining these two similarity matrices, we can en-
hance the semantic meaning of actions vector to solve the
sparsity problem. Algorithm 1 is the actions enhancement
algorithm. The inputs are SSM , PSM , the original actions
vector oav and the number of iteration t. The output is the
enhanced actions vector eav. In each iteration, the eav is
updated by multiple SSM firstly (line 3) and then is nor-
malized (line 4). Secondly, the eav is updated by multiple
PSM (line 5), followed by a normalization process. After t
times propagation, vector eav will be returned.

Algorithm 1 Actions Enhancement

Input:
The Synonym Similarity Matrix SSM ;
The Part-of Similarity Matrix PSM ;
The number of iteration t;
The original actions vector oav;

Output:
An enhanced actions vector eav

1: eav = oav
2: for i = 1 to t do
3: eav ← eav ∗ SSM
4: eav ← normalize(eav)
5: eav ← eav ∗ PSM
6: eav ← normalize(eav)
7: end for
8: return eav;

2.3 Construction and application of estimation
model

Learning from features and real sizes of historical project
data, we construct the size estimation model using regres-
sion algorithms. There are many kinds of mature regression
algorithms we can select, e.g. Support Vector Regression
(SVR), Bayesian Regression (BR) and Decision Tree Regres-
sion (DT). Size drivers are also factors of estimation model.
In our method, we borrow five drivers from COCOMO II [7]:
(1) Precedentedness of Product; (2) Development Flexibil-
ity; (3) Architecture/Risk Resolution; (4) Team Cohesion;
and (5) Process Maturity.

Finally, we can estimate the size of a new project by the
size estimation model. ESSE will extract entities from the
requirement specification of the new project, and further ex-
tract features from the five-tuple entities. Combining with
five size drivers, we can obtain the estimated size of each
statement in the requirement specification, using the esti-
mation model. As for the whole estimated size of a new

0.225

0.019

0.546

0.000

0.100

0.200

0.300

0.400

0.500

0.600

BOW LSA LDA AE

MMRE VAR PRED(25)

Figure 2: Results of Different Algorithms in Word-
Level Semantic Analysis.

project, we simply sum up all sizes of statements in require-
ment specification.

3. EXPERIMENTS
We totally collect 39 industrial projects in the commer-

cial field from 5 companies, including IBM, whose program-
ming languages are various, such as JAVA, C#, C++ etc.
There are 21 projects and totally 508 requirements in the
RSDs of these projects. For each requirement, we can ob-
tain its source line of code (SLOC). Also, for each project,
we ask its PTLs to fill a questionnaire to obtain its driver-
s. We use Magnitude of Relative Error(MRE, Eq.(1)) to
calculate error between real values and estimated values.
Mean Magnitude of Relative Error, Variance of Relative Er-
ror(VAR) and Percentage of estimation within 25% of actual
values(PRED(25)) can be further calculated.

MREi =
|Reali − Estimatedi|

Reali
(1)

3.1 Performance of Entity and Feature Extrac-
tion

In the process of chunk-level semantic analysis, we apply
CRFs-based algorithm to solve the problem and compare
the result with other classifiers i.e. Naive Bayes (NB) and
Support Vector Machine (SVM). Because of limited space,
we do not demonstrate the experiment results here.

In the process of word-level semantic analysis, to solve
problems in BOW vectors of action features in size estima-
tion, we apply Action Enhancement to do the word-level se-
mantic analysis. This experiment compares the performance
of Action Enhancement and those of topic models, which are
LSA [8], LDA [9] and so on. The regression algorithm we
use to train these size estimation models in this experimen-
t is SVR. The results are illustrated in Fig.2, which show
that actions represented by original BOW obtain the worst
results. To sum up, to do the word-level semantic analysis,
our algorithm achieves the best results.

3.2 Performance of Size Estimation
This experiment is used to select a proper regression al-

gorithm for training size estimation model. It estimates size
of each requirement in a RSD. Fig.3 illustrates results of
comparison of three different regression algorithms: Sup-
port Vector Regression (SVR), Bayesian Regression (BR)
and Decision Tree Regression (DT). Also, we compare re-
sults with that of Hussain’s method [2]. From the Fig.3,

0.225

0.019

0.545

0

0.1

0.2

0.3

0.4

0.5

0.6

SVR BR DT Hussain's Method

MMRE VAR PRED(25)

Figure 3: Results of Comparison of Different Re-
gression Algorithms and Existing Methods in Size
Estimation.

SVR obtains the best result, reaching 0.225 MMRE, 0.019
VAR and 0.545 PRED(25), followed by BR, just slightly
worse than results of SVR, and DT performs the worst. As
for Hussain et al.’s method, although it achieves the same
PRED(25) as SVR, the VAR of it is too larger, and the MM-
RE of it is also higher than SVR. To sum up, we find the
best regression algorithm for our estimation model is SVR.

Besides global and local features, there are also many oth-
er factors affecting the software. These factors, which are
called size drivers, cannot be obtained from RSDs automat-
ically. All these drivers can be obtained by asking PTLs
with questionnaires. In the questionnaire, each driver is in
six levels (0-5), and the higher the level is, the better the
driver is. We conduct an experiment to study how three
kinds of features: local features, global features and drivers
contribute to the size estimation model. The results show
these three kinds of features have positive contribution to
model more or less. Because of limited space, we do not
demonstrate the experiment figure here.

4. RELATED WORK
Various models can help measure software size manual-

ly. One simple measurement is Source Lines of Code (S-
LOC) [10]. Compared to SLOC, functional size [11] is a
more objective and widely used size measurement. Despite
the precision and objectivity of manual size measurements,
the complexity makes them cost a lot of human effort. N-
evertheless, some findings give ideas to make approximate
estimation available. Bowden et al. found that the number
of objects in requirements can be used to estimate software
size at an early stage [12]. Ayyildiz et al. extracted con-
ceptual class from Use Case and found its linear correlation
with size [13]. In addition, many extended approaches of
functional size estimation have also been proposed to make
it automatic. Ceke et al. proposed a method to combine CF-
P and conceptual model to estimate size in web application
development [1]. Hussain found ten linguistic features most
highly correlated with CFP, such as the frequency of Noun
Phrases, Parentheses, and Active Verbs [4]. On the basis
of these features, historical data and machine learning, the
software size can be automatically classified into four cate-
gories: Small, Medium, Large and Complex. However, all
these extended methods try to make functional size estima-
tion automatic, but they all just give a rough estimation.

5. CONCLUSION
In this paper, we propose an early software size estima-

tion (ESSE) method based on requirements semantic anal-
ysis and machine learning. Firstly, ESSE makes a two-level
semantic analysis of requirements specification documents.
Then, features are extracted from semantic analysis results.
Finally, a size estimation model is trained to predict size of
new projects.

6. ACKNOWLEDGMENTS
This research is supported by 973 Program in China (Grant

No. 2015CB352203) and National Natural Science Founda-
tion of China (Grant No. 61472242).

7. REFERENCES
[1] Denis Čeke and Boris Milašinović. Early effort

estimation in web application development. Journal of
Systems and Software, 103:219–237, 2015.

[2] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva.
Approximation of cosmic functional size to support
early effort estimation in agile. Data & Knowledge
Engineering, 85:2–14, 2013.

[3] Leandro L Minku and Xin Yao. Software effort
estimation as a multiobjective learning problem. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 22(4):35, 2013.

[4] HM Hussain. Linguistic Approaches for Early
Measurement of Functional Size from Software
Requirements. PhD thesis, Concordia University, 2014.

[5] John Lafferty, Andrew McCallum, and Fernando CN
Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.
2001.

[6] Hanna M. Wallach. Topic modeling: beyond
bag-of-words. In International Conference on Machine
Learning, pages 977–984, 2006.

[7] Robert E Park. Software size measurement: A
framework for counting source statements. Technical
report, DTIC Document, 1992.

[8] Thomas K Landauer, Peter W Foltz, and Darrell
Laham. An introduction to latent semantic analysis.
Discourse processes, 25(2-3):259–284, 1998.

[9] David M Blei, Andrew Y Ng, and Michael I Jordan.
Latent dirichlet allocation. the Journal of machine
Learning research, 3:993–1022, 2003.

[10] Ifpug: Fsm method: Iso/iec 20926:2009, software and
systems engineering - software measurement - ifpug
functional size measurement method.

[11] Roberto Meli and Luca Santillo. Function point
estimation methods: A comparative overview.
Accident Analysis and Prevention, 11(1):1–5, 1999.

[12] P Bowden, M Hargreaves, and Caroline S
Langensiepen. Estimation support by lexical analysis
of requirements documents. Journal of Systems and
Software, 51(2):87–98, 2000.

[13] Tülin Erçelebi Ayyıldız and Altan Koçyiğit. An early
software effort estimation method based on use cases
and conceptual classes. Journal of Software,
9(8):2169–2173, 2014.

