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Abstract— Bytecode obfuscation is an essential technique for
protecting intellectual property and defending against Man-At-
The-End (MATE) attacks to Java/Android applications. Several
bytecode obfuscators have been developed for modifying or
refactoring Java bytecode (.class) so that it becomes hard to
understand but remains fully functional. These obfuscators usu-
ally integrate a variety of obfuscation rules, allowing obfuscation
algorithms to be combined and enforced on the applications.
Meanwhile, it still remains a difficulty: Given a bytecode file
f» which obfuscation rule(s) need to be applied such that f can
get obfuscated sufficiently?

This paper presents ORChooser (Obfuscation Rule Chooser),
an adaptive approach to recommending a small number obfus-
cation rules for Java bytecode obfuscators. The key idea of
ORChooser is, given a bytecode obfuscator, to (1) randomly
select/unselect obfuscation rules for the obfuscator, and (2)
calculate the obfuscation distance between the bytecode before
and after obfuscation. Furthermore, ORChooser takes an iterative
process to adaptively obfuscate the bytecode file f/ such that the
obfuscated code is far away from f.

We have implemented ORChooser and evaluated it on a state-
of-the-art bytecode obfuscators: Android R8. The evaluation
results clearly show the strength of ORChooser. In particular,
within 5 iterations, ORChooser chose about 25% of obfuscation
rules for R8, reducing more than 29% of the bytecode size. The
similarity between the bytecode files before and after obfuscation
is less than 27%, indicating that the ORChooser-supported
obfuscators have obfuscated bytecode sufficiently and reduce its
comprehensibility significantly.

Index Terms—Dbytecode obfuscation, distance calculation, ob-
fuscation rules, obfuscation assessment

I. INTRODUCTION

Bytecode obfuscation is an essential technique for protecting
intellectual property and defending against Man-At-The-End
(MATE) attacks to Java applications [1], [2]. Bytecode obfus-
cation transforms a bytecode file (.class), say f, into another,
say f’, through renaming, inserting opaque predicates [3],
modifying its control flow [4], [5], etc. The obfuscated code f’
thus becomes obscure, as it contains variables with meaningless
names, redundant/inversed control flow, incomprehensible func-
tions, efc. Many bytecode obfuscators have also been designed
and developed, including Android R8 [6], ProGuard [7],
JavaGuard [8], and yGuard [9]. As Figure la shows, these
obfuscators modify or restructure Java bytecode so that it
becomes hard to understand but remains fully functional.

Every mature obfuscator, such as ProGuard [10] or Android
R8 [11], supports a variety of obfuscation rules. Each rule
corresponds to either an algorithm designed for obfuscating

the objective bytecode, or a property the resulting code needs
to hold. For instance, R8 can take some obfuscation rules
in Figure 1b. These rules can either specify the libraries on
which the obfuscated code depends (e.g., ~libraryjars),
or the strategies the obfuscator takes to obfuscate (e.g.,
—useuniqueclassmembernames). The obfuscated byte-
code, which is wrapped in a .dex (Dalvik Executable) file,
becomes obscure and its size shrunk.

Meanwhile, it still remains a problem when an engineer
chooses and employs an obfuscator:

Problem Description: Given a bytecode file f, which obfusca-
tion rule(s) need to be applied such that f can get obfuscated
sufficiently?

Indeed, the rules significantly increase the obfuscation space.
For instance, ProGuard supports 59 obfuscation rules. Let each
rule be selected and/or unselected and the enforcement of the
rules be unsorted. The obfuscation space will be at least 259,
which is beyond the capillarities of many human engineers.
On the other hand, illegal bytecode can be created due to
inappropriate combinations of rules. For example, as Figure 2
shows, when some —keep rules are missing, R8 may obfuscate
an application incorrectly—the application will crash at runtime
and output a ClassNotFoundException.

Instead, some engineers prefer to apply all of the rules,
expecting that the bytecode can thus get obfuscated much
more sufficiently. However, it may also raise another two
problems. First, the efficiency of the obfuscation process
can get decreased, as the process does contain many trivial
code transformations. Second, some rules are dependent on
the others or conflict to each other. A complete list of
obfuscation rules may not help the obfuscator achieve the
mostly incomprehensible code. A detailed evaluation will be
given in Section V.

To solve the above problems, we propose in this paper
ORChooser (Obfuscation Rule Chooser), an adaptive approach
to recommending obfuscation rules for Java bytecode ob-
fuscators. The key idea of ORChooser is, given a bytecode
obfuscator, to (1) randomly select/unselect obfuscation rules
for the obfuscator, and (2) calculate the obfuscation distance
between the bytecode before and after obfuscation. Furthermore,
ORChooser takes an iterative process to adaptively obfuscate
bytecode and maximize the obfuscation distance.

This paper makes the following contributions:
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(a) Some typical obfuscation processes. Note that (1) R8 takes the
ProGuard obfuscation rules; (2) R8 produces .dex files running on
Android runtime.
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(b) Obfuscation rules.

Fig. 1: Bytecode obfuscation process and rules.

1) Fitness function. ORChooser employs a fitness function,
which calculates the obfuscation distance between the
bytecode before and after obfuscation. Such a distance
can thus be adopted to evaluate whether a bytecode file
has been obfuscated sufficiently: the larger the distance,
the obscurer the obfuscated code, and the more sufficient
the obfuscation. Having the fitness function, we thus cast
the difficult problem of choosing rules as an optimization
problem.

2) Approach. ORChooser is an adaptive approach to rec-
ommending obfuscation rules. It selects and/or unselects
obfuscation rules, and takes an iterative process for
accepting/rejecting the selections. An improved genetic
algorithm is designed for speeding up the process and
maximizing the obfuscation distance between the original
and the obfuscated bytecode.

3) Implementation and evaluation. We have implemented
ORChooser and evaluated it on a state-of-the-art bytecode
obfuscators: Android R8. The evaluation results clearly
show the strength of ORChooser. In particular, within 5
iterations, ORChooser chose about 25% of obfuscation
rules for R8, reducing more than 29% of the bytecode
size. The similarity between the bytecode files before
and after obfuscation is less than 27%, indicating that
the ORChooser-supported obfuscators have obfuscated
bytecode sufficiently and reduce its comprehensibility
significantly.

The remainder of the paper is organized as follows: Section II
explains the main functionalities of obfuscators and obfuscation

1
2 public class Demo{ 1 .class public abstract LModel;
3 2 | .super Ljava/lang/Object;\ label{
4 3 sec:app}
5 3 .source 7
6 4
7 | public class EmptyClass{ 5 | .method public static main([Ljava/
8 lang/String ;)V
9 } 6
10 7 .end method
11 8
12 public abstract class Model{ 9 .class public La;
13 public static void main(String[] 10 .super Ljava/lang/Object:
args){ 11 .source "7
14 Class<?> demol = null; 12
15 try{ 13 .method public constructor <init
16 demol = Class.forName (”Demo” >0V
) 14
17 } catch (Exception e){ 15 | .end method
18 e.printStackTrace ();}
19 System. out. printin (”ClassName
» 4+ demol . getName () ) ;
20 EmptyClass ec = new EmptyClass () (b) Obfuscated code
’ java.lang.ClassNotFoundException: Demo

at java.lang.Class.classForName(Native Method)
at java.lang.Class.forName(Class.java:453)

at java.lang.Class.forName(Class.java:378)

at Model.main(:1)

(a) Original source

(c) Error message

Fig. 2: A simple example of obfuscation conflict.

rules. Section III formalizes the notion of obfuscation distance.
Section IV presents the details of the ORChooser approach.
Section V evaluates ORChooser on R8. Section VI surveys
related work and Section VII concludes.

II. BACKGROUND

As a variety of bytecode obfuscators exist and it might
not be possible for ORChooser to support all of them, we
choose two state-of-the-art obfuscators, ProGuard and RS, for
explaining the principles of ORChooser. Next describes the
bytecode obfuscators and their functionalities followed by a
detailed explanation about the obfuscation rules.

A. Bytecode Obfuscator

A typical obfuscator, such as ProGuard, does not only
obfuscate code, but also shrinks, optimizes, and pre-verifies the
obfuscated code. ProGuard obfuscates code by renaming the
classes, fields, and methods using short, meaningless names,
shrinks bytecode by detecting and removing unused classes,
fields, methods and attributes, and optimizes the resulting
bytecode using some classical data flow analysis techniques.
Thus ProGuard can make the code small, efficient and difficult
to understand.

Android R8 is a Java program shrinking and minification
tool that converts Java bytecode to optimized dalvik bytecode.
R8 is supported on Android Studio 3.2+ as a replacement to
ProGuard. In particular, it does all of shrinking, desugaring and
dexing in one step; it also supports tree-shaking the program
to remove unneeded code and supports minification of the
program names to reduce the code size.

B. Obfuscation Rules

ProGuard and R8 accept the same obfuscation rules. These
rules, as Table I shows, can be divided into four categories:
(1) core rules, (2) application-specific rules, (3) dependence
rules, and (4) the others.



TABLE I: Classification of ProGuard’s obfuscation rules.

Category Rules
-skipnonpubliclibraryclasses, -forceprocessing, -target,
-dontskipnonpubliclibraryclasses, -overloadaggressively,
-dontskipnonpubliclibraryclassmembers, -dontshrink,

Core -dontoptimize, -optimizationpasses, -dontobfuscate,

Rules -allowaccessmodification, -mergeinterfacesaggressively,
-keepparameternames, -dontusemixedcaseclassnames,
-useuniqueclassmembernames, -flattenpackagehierarchy,
-repackageclasses
-keepdirectories, -keep, -keepclasseswithmembers,-if,
-keepnames, -keepclassmembers, -keepclassmembernames,

Application| -keepclasseswithmembernames, -assumenosideeffects,

Specific -assumenoexternalsideeffects, -assumenoescapingparameters,

Rules -assumenoexternalreturnvalues, -keeppackagenames,
-keepattributes, -adaptclassstrings, -adaptresourcefilenames,
-adaptresourcefilecontents

Dependence| -include, -basedirectory, -injars, -outjars, -libraryjars

Rules
-printseeds, -printusage, -whyareyoukeeping, -printmapping,
-printconfiguration,-applymapping, -obfuscationdictionary,

Other -classobfuscationdictionary, -packageobfuscationdictionary,

Rules -renamesourcefileattribute, -dontpreverify, -microedition,
-android, -verbose, -dontnote, -dontwarn, -ignorewarnings,
-dump, -addconfigurationdebugging

a) Core Rules.: Some rules are generally purposed.
For example, the rule ~overloadaggressively specifies
that the obfuscator needs to aggressively overload when
obfuscating—one name may be assigned to multiple fields
and methods, making the program difficult to read. These rules
also support the obfuscator to shrink the obfuscated code.

b) Application Specific Rules.: Some —keep rules specify
which classes and class members (fields and methods) need to
be preserved. It is used to resolve rule conflicts. For example,
Figure 3 shows that the obfuscating rules are disabled for
ClassA but enabled for the others.

c) Dependence Rules.: ProGuard and Android R8 must
take —injars, —outjars, and —libraryjars rules for
specifying inputs, outputs, and libraries used, respectively. At
least one —keep rule must be added. In addition, an obfuscator
must specify the entry point of an application (e.g., a class
with the main method); if the entry point is not specified,
ProGuard fails to output, and R8 refuses to obfuscate.

d) Other Rules.: Other rules are used for debug-
ging, rather than for obfuscation. For example, when
-printmapping is taken, the obfuscator records a name
mapping between bytecode before and after obfuscation.

Note that R8 does not support all of the ProGuard rules [11].
For example, —-skipnonpubliclibraryclasses re-
quires non-public classes to be skipped when library jars are
met, and thus the obfuscator can be accelerated and memory
usage be reduced [12]. However, R8 has not yet supported this
rule.

III. OBFUSCATION DISTANCE

We next formalize the notion of bytecode obfuscation
followed by defining obfuscation distance.

Definition 1: (Bytecode Obfuscation) A bytecode obfusca-
tion P 25 P’ is a transformation of a bytecode file P to a target
P’. Here P and P’ need to be semantically equivalent, but
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Fig. 3: Rules are enabled for all the classes except ClassA,
since a —keep rule is used.

syntactically different. If P and P’ are semantically different,
we call A an over obfuscation.

Meanwhile, in practice it is not easy, and many times
not possible, to determine two bytecode files semantically
equivalent. Thus we assume that each obfuscator runs correctly,
but uses obfuscation distance to measure the obfuscation.

Definition 2: (Obfuscation Distance) An obfuscation dis-
tance between two bytecode files P and P’, say dis(P, P'),
represents the syntactical and semantical differences between
the two files.

In this paper, we let the obfuscation distance be associated
with (1) the differences between the two bytecode files in
their constructs (e.g., classes and methods), (2) the differences
between their function call graphs (CGs), and (3) the differences
between the tokens used.

First, each program is composed of a set of classes and
methods. Thus the distance can be computed using these
features—class names, the number of methods, the number of
fields, etc. Method features, such as method names, parameter
types and names, and method sizes, can also be used for
computing distances. For simplifying calculation, we let

(D

distance, — Z | feature’s — feqture}ﬂ
- featurel,
where feature® is the iy, feature of the bytecode file, and
| featurel, — feature’,, | computes the Jaro-Winkler distance
between the string features (e.g., class names) [13].

Second, let each program be abstracted into a call graph that
usually contains dozens of nodes. The distance between two
CGs are the edit distance (i.e., the Levenshtein distance [14]).
It calculates the minimum number of graph edit operations
(inserting, deleting, and modifying) to transform one graph to
another. Let CG e CG1 0 CGoe---0(CG,,_1 ¢ CG'. Let the
CG of P has size’ nodes. We have

distancey =

2

size!



Third, let each program corresponds to a token set T'oken.
The distance between the tokens of two programs can be
calculated using

distances = 1—

|Tokenp| + |Tokenp:| — |Tokenp U Tokenp:|

|Tokenp U Tokenp|
3)
It denotes the rate of the tokens owned by either program, but
not by both.
Having the above distances, the obfuscation distance between
the two bytecode files can be computed using:

distance = a X distance; + 8 X distances + v X distances
4

Here «, 3, and ~y are weights that need to be tuned for each
bytecode file under obfuscation. They are all set to 1 at the
beginning, but will be tuned in the following process.

R8’s Obfuscation. R8 obfuscates bytecode files when trans-

forming them into a dex file. Let P 2 pPand P L P
where P is a set of bytecode files, P’ a set of obfuscated
ones, P” is the .dex file, and A is an obfuscation operation
and 7 is an operation that converts Java bytecode files to a
.dex file. The obfuscation distance can be calculated after P’
is converted into a .dex file, or P” is decomposed into a set of
Java bytecode files.

IV. APPROACH

This section describes the ORChooser approach to recom-
mending obfuscation rules.

A. Overview

ORChooser takes an iterative process to select/unselect
obfuscation rules. An overview of ORChooser is shown in
Figure 4, which can be divided into three parts:

1) Inmitialization. This step randomly selects a set of core
rules for bytecode obfuscation. We let these rules
compose an initialization set.

2) An iterative process. ORChooser then performs an
iterative process. Each iteration selects and/or unselects
some obfuscation rules, and accepts or rejects the
selection by taking some strategies. A random strategy or
a greedy strategy can be employed here for maximizing
the obfuscation distance. Here an elitism algorithm is
specially designed for directing the iterative process.

3) Conflict detection and resolution. Some rules can
be conflict with each other, which can lead to ex-
ceptions (such as ClassNotFoundException and
NoSuchMethodException) at runtime. We detect
and resolve rule conflicts in the rule combination.

B. Distance Calculation

Having the obfuscation distance defined, we let the original
bytecode file be the center of the obfuscation space. As
Figure 5 shows, each point in the obfuscation space presents
an obfuscated file, and the one that is farthest from the center
is the one we expect to obtain.

Iterative Process
[_Pjar_/ PO.dex
A
o] Calculate | .. istanci
O—comblnatlo R8 Pl.dEXAD{ isan distanc <
combination Up.date. [—N
combination
x
Rules-chosen strategy
1
Candidate set Yes
of obfuscation Optimized combination
rules
Conflicts
_—1 Testrun e resolution
conflicts P1.dex

R8

combination JYest

combination

Fig. 4: An Overview of ORChooser.

Obfuscation
space . invalid obfuscation
O valid obfuscation
. original bytecode

. ideal obfuscation

Fig. 5: An illustration of the obfuscation space.

The process of calculating obfuscation distance is show in
Figure 6. It consists of three steps:

Step 1. Obtaining bytecode features. Having two bytecode
files (an original file and an obfuscated one), we obtain their
features. These features include class names, the method
numbers of classes, method names and sizes, the parameter
names and types, efc.

Step 2. Establishing mappings between bytecode. Potential
mappings can be established on the bytecode files. A mapping
process is much more like clone detection or code search—
given a class or a class method in one file, it searches for the
corresponding bytecode segment in another file. Some mapping
records during the obfuscation process facilitates the mapping
process.

Step 3. Calculating the obfuscation distance. Having these
mapping files, ORChooser calculates the syntactical and token
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Fig. 6: An example of calculating an obfuscation distance.

Algorithm 1 An Iterative Process of Selecting Obfuscation
Rules
Input: The original program P; Android R8; the obfuscated
program P’
Output: A rule combination for P
1: combination <— getlnitial()
2: while distance < ¢ do
3: P’ + R8(P, combination)
4. distance < calculateDistance(P, P’)
5
6
7

combination < selectRules()
: end while
: return combination

differences. We also build the call graphs of the two bytecode
files and then calculate the edit distance between them. Note
that some mappings retrieved in Step 2 can be employed for
mapping the nodes of the two call graphs. The obfuscation
distance can then be calculated for the bytecode before and
after obfuscation.

C. An Iterative Solution

After the initial combination is obtained, ORChooser it-
eratively selects/unselects obfuscation rules for maximizing
the obfuscation distance between the bytecode P and the
obfuscated bytecode P’. The iterative algorithm is shown in Al-
gorithm 1. Here € is a user-defined threshold, getInitial ()
is to initialize the rule combination. R8 then outputs the
obfuscated program P’ (line 3). calculateDistance (P,
P’) computes the obfuscation distance. selectRules ()
adds or removes obfuscation rules into the rule combination
by taking an elitism algorithm.

The elitism algorithm is a variant of the traditional genetic
algorithm [15] [16]. A new population selected by this variant

Algorithm 2 Conflict Resolution

Input: Rules, a rule combination that may raise conflicts; the
original program P; the obfuscated program P’
Output: A rule combination in which conflicts have been
resolved
while » > 0 do
pick up by random one rule in Rules and delete it
P’ < R8(Rules, P) //use R8 to obfuscate P
conflict < dalvikvm(P’) /frun P’ on dalvikvm
if conflict does not exist then
return Rules
else
n<n-—1
9:  end if
10: end while
11: return Rules

1:
2
3
4:
5:
6
7
8:

is to keep alive such that it can be carried over to the next
generation [17]. This strategy is known as an elitist selection
and guarantees that the solution quality obtained by the GA
will not decrease in the next generation. The elitism algorithm
is launched in case that the genetic algorithm converge slowly.

D. Conflict Resolution

We detect and resolve the conflicts by stepwise adjusting
obfuscation rules'. Algorithm 2 describes the process of conflict
resolution. Here n is the number of iterations. If no conflicts
are revealed, the rule combination is kept. Otherwise, a rule is
removed. Note that errors, once reported, facilitate engineers
to reproduce and eliminate the conflicts.

"Mainly by adopting Application Specific Rules.



V. EVALUATION

We have conducted two evaluations: one for investigating the
necessaries of combining different obfuscation rules and another
for evaluating the effectiveness of ORChooser on RS (ver. 1.4.9).
The both evaluations were conducted on Ubuntul6.04 x86_64
with OpenJDK 1.8.1_151 and Java HotSpot(TM) 64-Bit Server
VM.

A. The First Evaluation

1) Setup: We used R8 to investigate the effectiveness of
combinations of obfuscation rules. The evaluation was designed
to answer the following research question:

« RQ1. Whether will the obfuscated code be different when

different combinations of rules are employed?

Benchmark. Different rule combinations often lead to different
obfuscated bytecode. In order to investigate the effects of
different rules and their combinations, we prepared a mini
project: it contains a standard ArrayList. java file and
a Test.java file that operates an ArrayList object (e.g.,
initialization, inserting, appending, and deleting). The project
is used so that the relevance between the number of code
smells and different rule combinations can be observed.

Rule combinations. We picked up three obfuscation
rules (-dontshrink, —-dontoptimize and
—dontobfuscate). Thus we had eight rule combinations—
each corresponds to an obfuscated code file. Next shows the
combinations of the rules: 0 and 1 are to disable and enable
a functionality (i.e., shrinking, optimization, or obfuscation),
respectively.

shrink 0 0 0 0 1 1 1
optimize 0 1 0 0 1 1
obfuscate | 0 1 0 1 0 1 0 1
Obfuscated

ol lololo|e|e|lo|e|o

Two metrics are adopted to evaluate different rule combina-
tions.

Metric 1—Dex sizes. R8 obfuscates the mini project and
produced the obfuscated dex files (0)—(7). Dex size is chosen
as a metric—RS8 obfuscates, shrinks, and optimizes the code,
making the code size vary.

Metric 2—Numbers of code smells. In order to check whether
the obfuscated code is incomprehensible, we counted the
numbers of code smells in the code files (0)—(7)—the more code
smells, the obscurer the code?. We adjust the checking rules,
making code(0) have no smells to eliminate the influence of
decompiling process. Thus we decompiled the dex code using
dex2jar [18], [19] and JD-GUI [20] and used sonar [21] to
check each decompiled file. Dex2jar is a freely available tool
that is commonly used in Android reverse engineering. JD-GUI
is a standalone graphical utility that displays Java source codes
of .class files. sonar is a code smell checking tool.

2The existence of code smells usually indicates that the objective system is
error prone.
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Fig. 7: Dex sizes and numbers of code smells.

2) Results: The results for the first evaluation are shown in
Figure 7.

As Figure 7a shows, the rule for code shrinking significantly
reduces the code size from 14324 bytes to 15048 bytes; code
optimization slightly increases the Dex sizes by 0.37%, as it
is designed for speeding up the project by sacrificing memory.
When all of the three rules are taken, the size of the obfuscated
Dalvik bytecode becomes the smallest and drops by 29.37%.

The numbers of code smells in the decompiled code files are
shown in Figure 7b. Compared with the case that no rules are
enforced (the first column in the figure), the number of code
smells increases if any obfuscation rule is enabled except the
one for optimization. R8 creates the most code smells when
using the obfuscation rule—As long as it is enabled, the number
of code smells is always larger than 9. The code smells are
mostly relevant to names, e.g., constant names, function names,
and class names should conform to a naming convention, a
field’s name should not be same as the class name, efc..

We draw out the first finding.

Finding 1: Different rule combinations lead to differ-
ences among obfuscated bytecode.




B. The Second Evaluation

1) Setup: The evaluation was designed to investigate the ef-
fectiveness of ORChooser. In particular, the following research
questions need to be answered:

o RQ2. Is distance a good fitness function for directing the
obfuscation process?

o RQ3. Which strategy is suitable for choosing rules?

¢ RQ4. Can ORChooser resolve the rule conflicts?

Benchmark. Scimark 2.0 [22] and ErsBlocks [23] are two
benchmarks we chose in our evaluation. SciMark 2.0 is
a Java benchmark for scientific and numerical computing.
It has 2850 lines of code. SciMark 2.0 consists of five
computational tasks: Fast Fourier Transform (FFT), Jacobi
Successive Over-relaxation (JOR), Sparse matrix-multiply,
Monte Carlo integration, and dense LU factorization. ErsBlocks
is a small game in Java. It has 1300+ lines of code.

We chose Scimark 2.0 and ErsBlocks because (1) the
benchmarks are independent from users, and thus they can
be executed without explicit user inputs; (2) the benchmarks
can be executed both on JVM and DalvikVM; and (3) the
benchmarks do not contain reflection calls that can crash the
benchmarks at runtime.

We also used SPECjvm2008 [24] to evaluate OR-
Chooser. SPECjvm2008 is a benchmark suit for mea-
suring the performance of a Java Runtime Environment
(JRE), containing several real-world applications and bench-
marks focusing on core Java functionality. The benchmarks
chosen in SPECjvm2008 are compress, crypto_aes,
crypto_rsa, crypto_signverify and serial.
Metrics. We evaluated the obfuscation quality of ORChooser
in three respects: potency, resilience and cost [25], [26].
Potency shows the level of obscurity a specific obfuscator
gives. Resilience measures how well an obfuscator holds up
against reverse engineering attacks. Cost is the performance
and size penalties incurred by the obfuscation. Metrics that are
used for evaluating the obfuscation quality are: the code size,
the accuracy of reverse engineering, and the execution time of
an obfuscator (i.e., R8).

Quality Explanation Ways to measure

Metric

Potency Size of bytecode file | Recoding bytecode
and execution time size and time

consumed

Resilience | Accuracy of reverse | Using Dex2jar, JD-
engineering GUI and sonar

Cost Execution time of R8 | Recording time spent

Comparisons of rule recommendation algorithms. To an-

swer RQ3, we compared the elitism algorithm in ORChooser
to a random algorithm, a greedy algorithm, and a traditional
genetic algorithm.
1) A random algorithm. The random algorithm randomly
chooses obfuscation rules.
2) A greedy algorithm. The greedy algorithm is used to
determine whether some rule selection is kept. A rule

— Dexsize
3.5 --- Execution time
-+ Distance
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Sample Number

(a) Potency (dex size, execution time) and distance.

—— Error per file
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(b) Resilience (Code smells per file) and distance.

—— Execution time

17.5] v Distance
15.0
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Fig. 8: Distances w.r.t. 50 rule combinations.

selection is accepted only when it leads to a longer
obfuscation distance.

3) A traditional genetic algorithm. Every rule in candidate
set is a gene and the whole set is taken as chromosome.
With the help of crossover and mutation of gene, a
diversity of rule combinations can be obtained.

4) An elitism algorithm. The elitism algorithm keeps the
fittest organism alive, guaranteeing that it can be passed
to the next generation.

2) Answers to RQ2: We used 50 randomly chosen obfus-

cation rule combinations. The evaluation results are shown in
Figure 8.



Figure 8a shows the potency of obfuscation. Here we
normalize the dex size and execution time by:

_loriginal_size — size(i)|

new_size(t — -
@) original_size

where new_size(i) is the resulting size of the i_th sample,
original_size is the bytecode size of unobfuscated bytecode
file and size(i) that of the i_th sample. By comparing the dex
size, the execution time, and the distances, we can conclude
that distance is strongly relevant to the obfuscator’s potency.

Figure 8b shows the resilience of obfuscation that focuses
on the obfuscator capabilities of preventing against MATE
attacks. In this figure, except for some examples (e.g., the last
few samples), the changes of distances and numbers of code
smells are similar. It clearly indicates that distance is relevant to
the obfuscator’s resilience. Exceptions may be caused because
sonar is not designed for measuring obfuscation—it is able to
catch code smells and measuring the comprehensibility, while
not be sensitive to code obfuscation.

Figure 8c shows the cost of R8 on the 50 rule combinations.
We ran each combination for five times on Ubuntu and
calculated the average execution time. The figure indicates
that the cost of the obfuscator can increase along with the
increase of the distance. The main reason is that given an
obfuscator, the higher the obfuscation level, the more time the
obfuscator will spend on obfuscation.

Distance changes are consistent with the changes of dex
size, execution time, numbers of code smells and cost of the
obfuscator. It leads to the following finding.

Finding 2: Distance is a useful metric for directing the
obfuscation process.

3) Answers to RQ3: The results for different strategies are
shown in Figure 9a and Figure 9b. The average distance of
the random strategy is around 1.85 and the max is 3.74375
(let Figure 9a be an example). The greedy strategy works well
and can converge within 10 iterations—the distance does not
increase after 10 iterations.

However, for the greedy algorithm, the resulting combination
is not necessarily the optimal. Therefore, we apply the genetic
algorithm to get a solution. The traditional genetic algorithm
achieves an optimal core-rule combination after 50+ iterations.
Thus we took the elitism algorithm in which the default
selector of the traditional genetic algorithm is slightly modified.
Typically, the elitism algorithm converges within five iterations—
it is more quickly than the traditional genetic algorithm, and
even more quickly than the greedy algorithm.

Here we draw out the third finding:

Finding 3: The elitism algorithm converges more
quickly than the other algorithms. It usually returns the
optimal core-rule combination within five iterations.
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Fig. 9: Performance of four options-chosen strategies within
fifty iterations. Here the random algorithm is with solid line,
the greedy algorithm is with dashed line, the general genetic
algorithm is with dash-dot line, and the elitism algorithm is
with dotted line.

4) Answers to RQ4: We compared ORChooser against non-
rule obfuscation and all-rule combination. The results are shown
in Table II.

In this table, ORChooser can reduce the bytecode sizes of
resulting files by 29%—37% compared with those obtained
under non-rule obfuscation. However, for ProGuard (ver. 6.0.3),
the bytecode sizes increase dramatically. ORChooser can reduce
bytecode size by 37%—59%. That means ProGuard does
more changes while obfuscating. ORChooser can decrease the
bytecode sizes for almost all of the bytecode files, compared
with those obtained using the all-rule combination. Besides,
ORChooser can solve nearly 100% of conflicts.

Thus we draw out the fourth finding:

Finding 4: ORChooser’s rule combinations are more
effective than the all-rule combination in reducing code
size and resolving conflicts.

VI. RELATED WORK

This section discuss two strands of related work: code
difference analysis and recommendation techniques.

a) Code Difference Analysis: Code difference analysis

is an important research field in program analysis. Traditional

code difference analysis techniques are text-based, token-based,



TABLE II: Bytecode sizes of the obfuscated SPECJVM benchmarks. Here each cell in gray indicates that rule conflicts exist.

Bytecode Size (byte)
Android R8 ProGuard
ORChooser ORChooser
Non All ORChooser (conflict resolved) Non All ORChooser (conflict resolved)

scimark?2lib 40812 29420 28804 28804 33898 21580 21356 24709

compress.jar 188340 | 115656 114168 120428 172335 | 83560 82762 84786

crypto_aes.jar | 182288 | 116924 117092 118004 162804 | 78529 73878 80384

crypto_rsa.jar | 181984 | 117036 115332 116180 192490 | 78523 78188 79233

| crypto_ 182204 | 116912 115196 116124 162434 | 78286 77953 79043
signverify.jar

serial.jar 197084 | 116232 114540 130000 184130 | 78206 77927 96753

abstract syntax tree (AST) based, program dependence graph
(PDGQG) based and metric-based.

In recent years, new code difference analysis techniques
emerge. Nimrod efc. compute programs semantic differences
by abstract interpretation [27]. The most important part is

to abstract relationships between variables in two programs.

Yaniv Davidetc. propose an approach to decomposing a code
into smaller comparable fragments [28]. Then similarity and
difference of fragments can be located through customizing
semantic definitions.

Besides, by combining traditional code difference analysis
techniques, the code difference can be evaluated much more
precisely. Saed etc. propose Semantic Integrated Graph (SIG)
that integrates control flow graph, register flow graph, and
function call graph, and then use the representations for
identifying functions of binary code [29]. Execution Flow
Graph (EFG) that integrates dependence graph and control
flow graph has also been used for describing the semantics
of binary code [30], which can also be employed for code
difference analysis. In addition, the techniques that describe
text information can be utilized. For BinShape, instruction-level
characteristics are adopted [31]. Comparatively, ORChooser
calculates obfuscation distances in three dimensions, allowing
bytecode differences to be evaluated precisely.

b) Recommendation Techniques: Some recommendation
techniques exist. Collaborative filtering methods are designed
for collecting and analyzing a large amount of information on
users’ behaviors, activities or preferences and predicting what

users will like based on their similarities to the other users [32].

A collaborative filtering method can be designed either on the
memory [33], [34] or on some model [35]. However, to the
best of our knowledge, collaborative filtering is not suitable
for our purpose.

Content-based filtering is mainly based on a description
of the item and a profile of the user’s preferences [36],
[37]. Many algorithms recommend items similar to the past

ones. ORChooser is in fact a content-based filtering technique.

It evaluates obfuscated file and maximizes the obfuscation
distance iteratively.

VII. CONCLUSION

ORChooser is an adaptive approach to recommending
obfuscation rules for Java bytecode obfuscators. It calculates
obfuscation distance between the bytecode before and after

obfuscation, and then employs an iterative process to maximizes
the distance. The evaluation results show that ORChooser
successfully recommends obfuscation rules for R8—it allows
a small number of obfuscation rules to be chosen, while the
obfuscated code becomes shrunk and obscure.

As for future work, we plan to extend ORChooser in three
aspects. First, explore the influence of different «, S and
v. Second, the obfuscation distance between two bytecode
files can be measured using many other features, such as
word embeddings, traces and data flow. It remains our future
work in selecting bytecode features for calculating distances,
as different distance measurements may benefit ORChooser
in recommending obfuscation rules. Third, the principle of
ORChooser can be applied to many bytecode obfuscators. We
would make ORChooser practical and compatible to other
bytecode obfuscators.
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