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Abstract—Nowadays, developers can be involved in several
software developer communities like StackOverflow and Github.
Meanwhile, accounts from different communities are usually
less connected. Linking these accounts, which is called identity
linkage, is a prerequisite of many interesting studies such as inves-
tigating activities of one developer in two or more communities.
Many researches have been performed on social networks, but
very few of them can be adapted to software communities, as
information of users provided in these communities has a huge
difference to that in social networks. We tackle with the problem
by introducing TBIL, a novel tagging-based approach to identity
linkage among software communities. The essential idea of this
approach is to employ skills (measured by tags), usernames and
concerned topics of developers as hints, and to use a decision tree-
based algorithm and another heuristic greedy matching algorithm
to link user identities. We measure the effectiveness of TBIL on
two well-known software communities, i.e., StackOverflow and
Github. The results show that our method is feasible and practical
in linking developer identities. In particular, the F-Score of our
method is 0.15 higher than previous identity linkage methods in
software communities.

I. INTRODUCTION

Nowadays, software developers do not create software
alone. When facing intractable problems during their devel-
opment, the developers may seek questions and answers from
software developer communities such as the StackExchange
networks [1]. One of the most popular Q&A sites is StackOver-
flow1, which owns more than 4 million registered users and
11 million questions2. Many developers also share and learn
open-source projects in software repository platforms. One of
such platforms is Github3, in which as of 2015, there were
over 9 million users and 21.1 million repositories4. Both of
the Q&A sites and the software repository sites are important
for facilitating software developers and speeding up software
development.

On the other hand, developers can get involved in two
or more software communities. Some interesting researches,
such as cross sites data mining [2] or recommendation [3],
can thus be performed for helping understand the developer
behaviors and optimize these communities. Also, integrating
heterogeneous data of a developer from different communities
can provide hunter companies more valuable information for
recruiting. Meanwhile, most of these researches rely on Iden-
tity Linkage, a technique of linking accounts among different
communities [4]. Fig. 1 shows a simple example of identity

1http://stackoverflow.com/
2https://en.wikipedia.org/wiki/Stack Overflow
3https://github.com/
4https://en.wikipedia.org/wiki/GitHub
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Fig. 1. An Example of Identity Linkage between Two Software Communities

linkage between two software communities, each of which
contains only three users. Although six accounts have been
created in the two communities, they only refer to three people,
corresponding to three linkages between two communities: the
user Brandon exists in community 1 and community 2, while
Sam Peter in community 1 has an abbreviation (Sam P.) in
software community 2, and John in community 1 and Jackson
in community 2 are the same developer.

Identity linkage problem has been widely studied in social
networks like Facebook and Twitter [4][5][6]. The researches
usually link identities by capturing user profiles (including
usernames, avatars, descriptions, locations, etc.), constructing
users’ topological structures and as well tracking user behav-
iors (e.g., writing styles, uploading photos, etc.). However,
these approaches are not easy to adapt to software com-
munities, as the personnel information is not shareable and
trackable. For example, a user is not allowed to upload pho-
tos in Github or StackOverflow. Thereafter, some researches
in software communities, such as [7][8][9], focus on using
usernames and user emails to link user identities, while it is
still possible that many users choose different usernames in
different communities. User emails are also not accessible in
many communities for privacy reasons.

Having realized the limitation of adapting the existing
approaches to identity linkage in software communities, we
believe that some extra information can be mined for linking
identities, because (1) unlike people in social networks, users
in these communities are all developers and have specific
programming skills (such as Java, JavaScript, C++, etc.), and
(2) topics discussed in these communities are all related to
software engineering. In this paper, we borrow some ideas
from identity linkage methods in social networks, and then
attempt to introduce these two special features to solve this
problem in software communities. However, we will face some
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fundamental problems: (1) How to obtain a set of skills terms
for different communities and how to obtain the skills of each
user? (2) How to get topics that a user concerns? (3) How to
link users based on various features?

To address these challenges, we propose a novel method,
TBIL, to link users between different software communities.
Our method consists of three steps: (1) to extract three kinds
of features from usernames, user skills and user concerned
topics from the text information generated by users. To obtain
user skills for each user in two communities, we propose a
cross-sites tagging method based on Naive Bayes and spread-
ing activation technique [10]. To describe user concerned
topics, we apply a topic model, Latent Dirichlet Allocation
(LDA) [11] to get the topic distribution for each user. (2)
based on these features, to apply a machine learning method,
Decision Tree (C4.5 algorithm [12]), to obtain probabilities for
every two users in different communities, which represents
how likely they refer to a same person. (3) based on these
probabilities, to use a heuristic greedy matching algorithm
to link these users with one-to-one constraints, which states
that no user has multiple accounts in the same community
(for one user has multiple accounts, it is a different problem
[13]). We measure the effectiveness of TBIL on two well-
known software communities, i.e., StackOverflow and Github.
The results show that our method is feasible and practical
in linking developer identities. In particular, the F-Score of
our method is 0.15 higher than other previous identity linkage
methods in software communities. Our main contributions are
summarized as follows: (1) We propose an identity linkage
method for software communities by leveraging user skills and
user concerned topics compared to previous methods. (2) We
propose a cross-sites tagging algorithm to obtain user skills.
(3) We propose a heuristic greedy matching algorithm to link
users with one-to-one constraints.

II. RELATED WORK

In this section, we first introduce methods of identity
linkage in both software communities and social networks. As
our method refers to tagging problem, we also present some
approaches in this area.

A. Identity Linkage in Software Communities

To link users in different software communities, several
methods have been proposed [7][8][9]. In these methods, each
user in a community is represented as a pair (username, email).
Goeminne et al. proposed a simple algorithm [9] by defining
some simple rules; for example, if two pairs share at least
one element, or at least one shared element has length at
least in a certain threshold minLen, then they are the same
person. This approach is robust against noisy aliases. A more
advanced algorithm was proposed by Bird et al. [8], where
some text similarity measures, like Levenshtein distance, are
used to measure the similarity between two usernames rather
than defining some simple matching rules. Both Goeminne and
Bird did not consider the semantic information in the name
and the email; therefore, Erik. et al. proposed a semantic-based
method [7] to link users by applying Latent Semantic Analysis
(LSA) [14]. However, all these three methods mentioned above
only considered the username and the email of a user while
many other important information is ignored such as the

programming skills and the social behaviors of a user. As
users in Github and StackOverflow are all developers, they may
grasp different kinds of programming skills such as Python or
C++. Besides, due to the privacy, some communities do not
provide the user email information.

B. Identity Linkage in Social Networks

Identity Linkage has been a hot research topic in social
networks like between Facebook and Twitter in recent years.
A kind of method is linking users by their profile, in which
there are many available tagging information such as username,
avatar, location, occupation etc. [15][16][17][18][19]. Iofciu et
al. proposed a method, in which each user profile is represented
as a vector, and then linking users by computing the similarity
between two vectors [15]. On the other hand, user-generated
contents like twits, and user-behavior like writing style are also
considered in some approaches [4][20][6][5]. Liu et al. pro-
posed a framework to link social identities called HYDRA [4].
Their method considers heterogeneous behavior of users and
build consistency matrix to model the structure consistency in
different social networks. Unfortunately, the goal of our paper
is to link users in software communities. The largest difference
between software communities and social networks is that the
quality and the type of contents people can generate in software
communities are far less that those in social networks; for
instance, users in software communities are not allowed to
share their locations. Besides, some software communities lack
of topological structures among users, such as people cannot
follow others in StackOverflow.

C. Tagging Techniques

There are a lot of studies of tag recommendation for
social media sites like Flicker and Twitter [21][22][23][24].
Also, tag recommendation in software engineering sites is
in high demand [25][26][27]. Wang et al. proposed a tag
recommendation system called EnTagRec [25], in which it
combines the Bayesian Inference, Frequentist Inference and
spreading activation technique [10] to recommend tags for
StackOverflow. Xia et al. proposed a tag recommendation for
software information sites like Freecode and StackOverflow
based on multi-label classification [26]. All these methods will
finally recommend several tags to the contents in software
information sites, while our method focuses on getting a tag
distribution for each users and then calculates distributions
similarity between two users to measure how likely they refer
to a same nature person. Tag recommendation is the closest
work to ours, we thus borrow the multi-label classification idea
and the spreading activation idea from previous work.

III. PROBLEM DEFINITION

According to [4], we define the identity linkage problem in
software communities. Let P donate the set of all nature people
in real life. For two software communities C and C’, let UC

and UC′ donate the set of users in C and C’ respectively. Let
g(u) = p, where u ∈ C∪C ′, be a function, mapping a user u to
a nature person p, where p ∈ P. The identity linkage problem is
to find a function f : UC×UC′ → {0, 1}, which means for user
pair (uC , uC′) ∈ UC × UC′ , if f(uC , uC′) = 1, then uC and
uC′ are referring to the same nature person, namely, g(uC) =
g(uC′); otherwise, g(uC) �= g(uC′). Because our problem is
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to link users with one-to-one constraints, if g(uC) = p, there
does not exist another u′

C ∈ UC , such that g(u′
C) = p. In our

problem, each user is represented by a pair u = (UN,D),
where UN is the username and D = {d1, d2, ..., dn} is all
documents generated by this user.

The key issue to solve the identity linkage problem is
to learn the function f(uC , uC′) to predicate whether uC

and uC′ refer to a same nature person. A straightforward
approach is to find some similarities between uC and uC′

from information they provide or contents they generate.
Previous methods in software communities only compare the
similarity of usernames and the prefix of emails, while those in
social networks leverage machine learning methods to combine
heterogeneous information. Because we consider three kinds
of features, machine learning techniques are good options
to combine these features. However, classifiers in machine
learning methods usually give a binary judgement, which will
make many redundant links and thus lead to a poor recall. To
solve this problem, we borrows the idea in [6]. Our method
leverages the intermediate results of classifiers, which are the
probabilities of how likely they refer to a same person, and
then finds a matching through these probabilities to link users
with one-to-one constraints.

IV. IDENTITY LINKAGE ACROSS SOFTWARE

COMMUNITIES

As the identity linkage problem defined in Section III, for
each pair of users (uC , uC′) ∈ UC × UC′ , we first extract
three kinds of features to measure the similarities between
them. Next we apply a machine learning algorithm, Decision
Tree, to train a model from a ground-truth data set based on
these features, and then assign a probability to each users pair.
Finally, a heuristic greedy algorithm will be used to select
proper linkages based on these probabilities with one-to-one
constraints. For each user, we need two kinds of information,
documents generated by this user and the username.

A. Heterogeneous Features across Communities

We totally extract three kinds of features from the informa-
tion generated by a developer in both communities, which are
features from usernames, feature from user concerned topics
and features from user skills.

1) Features from Usernames: Because a person may have
different usernames in different software communities, user-
name cannot be the only feature to identify a user. However,
usernames are more important than documents, because some
users do not generate any documents but usernames are the
required information for signing up their accounts.

Some people create usernames based on their names, while
some do not, we thus introduce two kinds of string matching
methods, the ratio of Levenstein distance and the Jaro-Winkler
distance5, to measure the similarity between two usernames.
The ratio of Levenstein distance, based on the Levenstein
distance, is widely used to measure the distance between two
common strings, while the Jaro-Winkler distance is designed
for short strings matching, especially for the person’s name.

5The library we used to calculate these two distances is in
https://github.com/ztane/python-Levenshtein/

The values of both distances are in the range [0, 1] and higher
the value, higher the similarity between two strings.

2) Feature from User Concerned Topics: We use a state-of-
the-art algorithm, Latent Dirichlet Allocation (LDA) [11], to
obtain the topic distribution for each user. LDA has been shown
effective to process various text data in many domains, such as
software engineering and social network analysis. The inputs
of LDA algorithm are a set of documents and the number of
topics K, and the outputs are the topic distribution of each
input document. In our problem, some users may generate not
only one document, we thus merge all documents generated
by a user to D to further apply LDA.

Because LDA is a kind of bag-of-words model, before
applying it, each document D must be converted to a bag-
of-words vector. Firstly, we remove all stopwords6 which are
used in almost every document such as ”the”, ”is”, etc. Then
we use stemming to reduce words to their root form7. Finally,
we filter words that only appear in one community and words
appearing in a low frequency (appear less than 5 times in
all documents). After obtaining a text vector for each user,
we set text vectors of all users from both communities as
input and then use LDA to get the topic distribution for each
user. On the other hand, to decide the best number of topics
K, we use an approach proposed in [28]. The basic idea
of this method is simple, which states that the best number
of topics is the one with the highest log likelihood value.
Therefore, we build LDA model several times with different K,
and then choose the K with the highest log likelihood value.
After obtaining the topic distribution for each user, we use
the symmetrical KL-divergence, defined in (2), to calculate
the similarity of topic distributions between two users. KL-
divergence is a famous distance measure between two distri-
butions. Eq. (1) is the definition of KL-divergence between
p(x) and p(y). The KL-divergence satisfies KL(p ‖ q) ≥ 0,
and KL(p ‖ q) = 0, if and only if p(x) = q(x). Besides,
higher the value, lower the similarity between p(x) and p(y).
According to the definition, KL-divergence is not symmetrical,
namely, KL(p ‖ q) �≡ KL(q ‖ p). To make it symmetrical, a
symmetrical KL-divergence is defined in (2).

KL(p ‖ q) = −
∫

p(x)ln

{
q(x)

p(x)

}
dx (1)

KLs(p, q) =
KL(p ‖ q) +KL(q ‖ p)

2
(2)

3) Features from User Skills: Documents in some software
communities are labeled with tags, such as questions are
labeled by their owners in StackOverflow. These tags can
be treated as skills of users as they all refer to terms in
software engineering. However, some communities do not
have the tagging system. While linking users in two different
communities, according to the type of these communities, there
are three situations: (1) If both two communities does not have
the tagging system, then we can apply the cross-sites tagging
method proposed in this section to label documents in these
communities to tags in another community with the tagging

6The stopwords list from http://www.textfixer.com/resources/common-
english-words.txt

7The stemming package is in http://www.nltk.org/api/nltk.stem.html.
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system like StackOverflow. (2) If only one community has the
tagging system, we can also use the cross-sites tagging method
to build a model based on labeled data in this community
and then use this model to label the other community. (3)
If both two communities have the tagging system, we can
use the intersection of tags in these two communities. If the
intersection is null set, the cross-sites tagging method still can
work.

To introduce the cross-sites tagging method, we select two
communities, Github and StackOverflow, as an example. Let
the set of all tags in StackOverflow donate LSO. The goal
is to label each repository in Github based on the content of
readme file and the description of the repository. The cross-
sites tagging method consists of three steps: (1) The first step
is to clean some unnecessary tags in StackOverflow, such as
some low frequency tags. (2) The second step is training a
Naive Bayes model by all labeled documents in StackOverflow
and then applying this model to label repositories in Github. (3)
The last step is computing co-occurrences between each two
tags in StackOverflow and then applying spreading activation
to obtain more associated tags.

Because most labels only appear a few times in StackOver-
flow, labels in LSO cannot be used directly. Interestingly, we
find that 20% labels, donated by L∗, can cover all questions.
Therefore, the first step is to process the rest 80% labels.
For each label in the LSO − L∗, we can either abandon it
directly, or use some other similar labels which appear in L∗
to rewrite it. In following situations, we will rewrite the label
l0 ∈ LSO − L∗:

(1) If l0 contains the version information, then it will be
filtered by some regular expressions. For example, ios-4.2 or
ios5.1 will be rewritten to ios.

(2) If l0 is synonyms8 to another tag l1 ∈ L∗, then l0
will be rewritten to l1. For example, js will be rewritten to
javascript.

(3) If l0 is the combination of labels {l1, l2, ..., ln}, where
l1, l2, ..., ln ∈ L∗, with ”-”, then we split l0 by ”-”, and use
{l1, l2, ..., ln} to represent label l0. For example, google-maps-
sdk-ios will be rewritten to {google-maps, sdk, ios}. (Noted
that google-maps∈ L∗).

After cleaning invalid tags, the next step is to label each
repository in Github based on the texts in readme file and the
description of it. As the each question or answer (an answer
can link to a labeled question) in StackOverflow is labeled,
we can set these labeled data as training data to train a Naive
Bayes model [29], which is widely used in text categorization
with word frequencies as the features. Naive Bayes model is
based on the Bayes’ theorem shown in (3), where y ∈ L∗,
and x is the input document. After training the labeled data in
StackOverflow, we can obtain a Naive Bayes model which is
then applied to get a tag distribution TD for each repository
in Github.

P (y|x) = P (x, y)
P (x)

(3)

8The synonyms relations are in http://stackoverflow.com/tags/synonyms
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Fig. 2. An Example of Spreading Activation in One Iteration

To get the final tag distribution, we apply a technique
named spreading activation [10] to infer associated tags. The
inputs of spreading activation are a similarity matrix S, where
each element si,j in S is the similarity between the tagi and
the tagj , and the initial state of tags which is TD in our
context. During the process of spreading activation, for each
tag in TD, in one iteration, it propagates its weight to other
tags with corresponding similarity. Fig. 2 shows an example
of an iteration of spreading activation. Supposed we have a
document labeled by {css: 0.7, html: 0.0, matlab: 0.0} and
the universal set is {css, html, matlab} with the similarity
shown in Fig. 2 between every two tags. After an iteration,
the css propagates to html as they have 0.8 in similarity, and
thus the vector becomes {css: 0.7, html: 0.56, matlab: 0.0}.

To apply this technique, the most important step is to
construct the similarity matrix. Each element of the similarity
matrix is the similarity between two tags, and we consider that
the similarity of (tagi ‖ tagj) can be unequal to (tagj ‖ tagi).
For instance, for tags browser and chrome, if a user asks
a question in StackOverflow about chrome, browser is also
a reasonable candidate tag, while if the question is about
browser, then the probability of the question referring to
chrome should be lower than the previous one. Thus we
use co-occurrences between tags to measure this similarity.
Because in StackOverflow, most questions are labeled with
more than one tag, we firstly count the co-occurrence for
each two tags (tagi, tagj) ∈ L∗ × L∗ and then calculate the
joint probability P (tagi, tagj) based on these counts. Next,
we calculate P (tagi) for each tagi ∈ L∗ also by simply
counting. Finally, the condition distribution P (tagi|tagj) is
calculated by the Bayes’ theorem (3), where y refers to tagi
and x refers to tagj . Besides, to prevent over propagating, if
P (tagi|tagj) < α (α = 0.3 in our method), then it will be set
to 0.

After obtaining the similarity matrix, the next process is to
propagate initial tags to get more relevant tags. Algorithm 1 is
the spreading activation algorithm. The inputs are a similarity
matrix M (n× n), the initial tag distribution TD (1× n) and
the number of iteration t (In our method, t is set to 1.).
The output is a new tag distribution TD′, in which there
are some other associated tags. In each iteration, the TD′
is updated by multiple similarity matrix M (line 3). After t
times propagation, we can get a new distribution TD′, then
we normalize it (line 5) before returning.

If a community does not have the tagging system, we can
apply the cross-sites tagging method to obtain a tag distribution
TD′ for each user from the other community with the tagging
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Algorithm 1 Spreading Activation

Input:
The similarity matrix M ;
The initial tag distribution TD;
The number of iteration n;

Output:
A new tag distribution TD′

1: TD′ = TD
2: for i = 1 to t do
3: TD′ ← TD′ ∗M
4: end for
5: TD′ ← normalize(TD′)
6: return TD′;
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Fig. 3. An Example of Heuristic Greedy Matching Algorithm

system. Therefore, users in two communities are mapped to
a same space. We then apply the symmetrical KL-divergence,
defined in (2), to obtain the similarity between two users.

B. Identity Linkage

Giving two users (uC , uC′), we apply a machine learning
algorithm, Decision Tree (C4.5 algorithm [12]), to obtain the
probability of how likely they refer to the same person by
combining all three kinds of heterogeneous features described
in the previous section. After that, the identity linkage problem
converts to find a matching in bigraph. We use a Heuristic
Greedy Matching (HGM) algorithm to obtain a feasible solu-
tion. Algorithm 2 is the HGM algorithm. Obviously, the more
information a user generates, the more evidences that we can
use to link. Therefore, in HGM algorithm, firstly, to measure
the volume of information generated by a user, we count the
number of documents generated by each user in C (line 1).
Secondly, HGM algorithm selects the user uC who generates
the most information (line 3), and then chooses the target user
uC′ with the highest probability with uC (line 4). (uC , uC′ )
is two users that refer to one person (line 7). Thus, they will
be removed (line 5 - line 6). HGM repeats these steps until
finding a feasible solution.

Fig. 3 illustrates an example of HGM, in which each users
pair is assigned a probability by decision tree. In HGM, the
first step is calculate the information generation of each user,
shown in the left in Fig. 3(a). Because user X generated the
most information, and X’ is the most proper candidate of X,
as (X, X’) shares the highest probability, (X, X’) is the first
linkage HGM selects. Then X and X’ will be removed in both

Algorithm 2 Heuristic Greedy Matching for Identity Linkage.

Input:
The set of users in communities C, UC ;
The set of users in communities C ′, UC′ ;
Probabilities between candidates across the sites,
{(UC , UC′ , P )};

Output:
Identity Linkage IL

1: Calculating the information generated by each candidate
in UC .

2: while UC �= Ø do
3: Selecting the candidate uC in UC with the most infor-

mation generation;
4: Selecting the candidate uC′ in UC′ with the largest

probability with uC ;
5: UC = UC − {uC}
6: UC′ = UC′ − {uC′}
7: IL = IL ∪ (uC , uC′)
8: end while
9: return IL;

communities before finding the next matching. Finally, Fig. 3
(b) shows all three linkages (X, X’), (Y, Y’) and (Z, Z’).

V. EXPERIMENTS

In this section, we first present our experimental settings
and then analyze the experiment results. We totally conduct
four experiments to answer following questions: (1) why we
select the Decision Tree method to assign the probabilities
rather than SVM, Logistic Regression, etc.? (2) How much
does three kinds of features contribute to the model? (3)
Why do we choose the tag co-occurrence as the similarity
measurement between tags rather than others? (4) How does
our identity linkage method perform compared to other state-
of-the-art methods?

A. Experimental Settings

We select two famous software communities, Github9 and
StackOverflow10, to conduct the experiments. The data we use
is all before January, 2015. To validate our approach, the first
thing is to construct ground-truth data. Because in those two
data sets, few users provide their profile urls, we consider that
if the profile url of a user in StackOverflow and a user in
Github both link to the same site, then they are the same
person. However, we cannot simply link users by this way as
in our statistics, there are less than 10% users providing their
profile urls. In these 10% users, we total link 12,000 users,
corresponding to 6,000 people, by profile urls. Therefore, we
use these 6,000 people, which are divided into 5 groups, to
adopt 5-folder cross validation to evaluate the performance of
our method. The detailed information of these 6,000 people
is illustrated in TABLE I. In TABLE I, there are 145,375
questions and answers posted in StackOverflow and 221,342
repositories created or attended by these 6,000 users. Among
these data, there are 3,655 tags appearing in StackOverflow
while only 67 in Github. Because there are far less labels in

9The data dumps of Github are in http://ghtorrent.org/downloads.html
10The data dumps of StackOverflow are in

https://archive.org/details/stackexchange
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TABLE I. DETAILED INFORMATION OF DATA SET

Site Number of Documents Documents per User Number of Tags
StackOverflow 145,375 24.23 3,655

Github 221,342 36.890 67
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Fig. 4. The results of different algorithms when obtaining the probability

Github, we use two sets of tags, L = LSO ∩ LGH and L∗
mentioned in Section IV. The number of labels in set L and
L∗ is 51 and 731 respectively.

Let IL1 donate the set of true links and IL2 donate the
set of links found by our method. Because the linked step of
our method is based on bigraph matching, |IL1| = |IL2|. As
the definition of Precision in (4) and Recall in (5), Precision
is equal to Recall. Therefore, we only list the Precisions
when comparing how different features affect the result of our
method, and list Precisions, Recalls and F-Scores (defined in
(6)) when comparing with other methods.

Precision =
|IL1 ∩ IL2|
|IL2| (4)

Recall =
|IL1 ∩ IL2|
|IL1| (5)

F − Score =
2 ∗ Precision ∗Recall

Precision+Recall
(6)

B. Obtaining Probability by Other Algorithms

Before linking users, we assign probabilities for each two
users to represent how likely they refer to the same person
by the Decision Tree (C4.5) algorithm. This experiment shows
why we choose this algorithm rather than others. We first select
other four famous classification algorithms, Support Vector
Machine, Naive Bayes, AdaBoost and Logistic Regression to
train four other different models, and then compare the final
results of them. The results are illustrated in Fig. 4. In Fig. 4,
the name of algorithm, used to construct corresponding model,
is shown in the horizontal axis , while the values in vertical axis
reflect the precision of corresponding model. According to Fig.
4, when these probabilities are assigned by C4.5 algorithm,
the final precision is the highest, reaching 0.753, then the
next is the results of AdaBoost, at 0.738. The worst situation
appears in Naive Bayes, only reaching 0.645. Therefore, from
the results of comparison, C4.5 algorithm is our best option.
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Fig. 5. The results of different models constructed by different feature(s)

C. Features’ Contributions

We totally use three kinds of features (totally five features)
to train the model, which are similarities between usernames
(the ratio of Levenstein distance and the Jaro-Winkler dis-
tance), abbreviated by U , topics distributions, abbreviated by
T , and two kinds of skills distributions (two sets of skills
L∗ and L), abbreviated by S. This experiment will show
how much the three kinds of features donate to final results.
Unlike linear classification algorithms like SVM or Logistic
Regression, in which the linear weights of features reflect
how importance they are, C4.5 algorithm calculates the Gain-
ratio of a feature and then decides whether it should be split.
We build several models with different features or feature
combinations by C4.5 algorithms and then show the results
of these models.

Fig. 5 illustrates how each feature or feature combination
affects the model. In Fig. 5, the feature selection is shown
in horizontal axis, while values in vertical axis reflect the
precision of corresponding model. According to Fig. 5, when
only one kind of feature is concerned, the model trained
with usernames similarity features reaches the best result, at
the precision of 0.649, about 0.15 larger than those trained
with topics similarity feature or with skills similarity features.
When two kinds of features are considered, model trained
without usernames similarity features (T+S) is worse than
those trained with usernames similarity features (U+T or U+S).
Model trained with three kinds of features obtains the best
performance among others. From the results, usernames simi-
larity features are the most important, however, other two kinds
of features also have positive contribution to final model. We
consider this is because providing a username is a prerequisite
for signing up an account, while users are not forced to post
questions or answers in StackOverflow and to create reposito-
ries in the Github. Therefore, there are some people who do
not generate any information in both sites. For these people,
if we only use topics similarity or skills similarity as features,
it is hard for model to do the classification; therefore, the only
clue is the features obtaining from username similarity. This is
why when considering the username similarity features, model
can obtain a good performance.

D. Other Ways to Construct the Similarity Matrix

In our method, the conditional distribution P (tagi|tagj)
is used to measure the similarity between two tags. The
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TABLE II. PRECISIONS OF OTHER WAYS TO CONSTRUCT THE

SIMILARITY MATRIX

Method Co-occurrence Questions Similarity Wikipedia Similarity

Precision 0.753 0.732 0.725

calculation of conditional distribution is based on tag co-
occurrence. However, there exist other approaches to calculate
the similarity between tags; for instance, we can compare the
similarity between the descriptions of two tags in Wikipedia11

or compare the text information of the all questions belonging
to each tags. We conduct this experiment to compare in
which way to construct similarity matrix can obtain the best
result. When comparing the similarity between tags based on
descriptions in Wikipedia or questions, we first preprocess
these texts in the way mentioned in IV-A, and then calculate
words tf-idf to construct vector model. Finally, we use KL-
divergence (1) of two vectors to obtain how similar between
two tags.

Based on these three different approaches, three different
similarity matrixes are then constructed. The finally results are
shown in TABLE II. It is clear from TABLE II that when
constructing similarity matrix by co-occurrence, the model
obtains the best result, with 0.753 precision; following by
constructing matrix based on questions similarity, at 0.732.
The worst results appears in the situation when constructing
similarity matrix by Wikipedia similarity (0.725 precision).
This can be explained by two reasons: (1) when we use vector
model to calculate the similarity between two tags, the dimen-
sion of the vector is larger than 10,000 (each dimension is a
word). Although we clean the stopwords before constructing
vectors, there are still many unrelated words that we cannot
filter. Due to these noises, these two kinds of similarity are
not very accurate. (2) Tags of each question are labeled by the
question asker, and these tags are also very concise without
much noise. Therefore, constructing similarity matrix by tags
co-occurrence can obtain a better result than constructing by
other other two approaches.

E. Comparison with Other Methods

In this experiment, we compare our method with other two
state-of-the-art methods, the simple method [9] and the Bird
et al. method [8], to solve the identity linkage problem across
software communities. As for the LSA-based method [7], we
need to provide a dictionary that is a list of common names as
input. Because it is too hard to collect the common names list,
especially for common names in different country, we do not
implement this method for comparison. In simple method and
Bird et al. method, each user in a community is represented
by a pair (username, email), while we cannot obtain the users’
emails; therefore, we only use matching techniques mentioned
to usernames in those methods between two pairs. On the other
hand, in the last phase, our method links users by finding a
matching with one-to-one constraints based on probabilities
assigned by the classifier. However, the classifier can also
provide the other kind of outputs, 0, which states that those
two users do not refer to the same person, or 1, otherwise.
This experiment also validates whether matching phase can
improve the final performance or not.

11https://www.wikipedia.org/
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Fig. 6 illustrates the results of comparison. In Fig. 6,
horizontal axis donates each method’s name, in which Method
without Matching is the method that uses 0-1 classification to
link user and Method with Matching is the method that uses
probabilities and then finds a matching. The values in vertical
axis reflect the Precision, Recall and F-Score of corresponding
method. From the Fig. 6, Simple method, Bird et al. method
and Method without Matching show a common situation that
they all achieve high precisions (around 0.94), but low Recalls
and F-Scores, while despite the lowest Precision of Method
with Matching, it achieves the highest Recall (0.753) and F-
Score (0.753).

We explain this reason by an example illustrated in Fig. 7,
in which the left side shows the user’s username and corre-
sponding skills in StackOverflow, while the right side shows
those in Github. Because the username Brandon of the user
in StackOverflow is similar to Bradon, Brandon and Brand
in Github, method linking users only by usernames (Simple
method and Bird et al. method) will generate three links. How-
ever, when the user’s skills are concerned, obviously, Brand
in Github is not the right link to Brandon in StackOverflow,
as the skills between them have large difference. Therefore,
Method without Matching will link Bradon and Brandon in
Github to Brandon in StackOverflow. However, with one-to-
one constraints, only Brandon in Github is linked to Brandon
in StackOverflow, as this pairs shares a higher similarity than
others. The reason why Simple method, Bird et al. method
and Method without Matching can all obtain high precisions
and low recalls is that they all create many redundant links
compared to Method with Matching.

VI. CONCLUSION

In this paper, we have proposed an identity linkage method,
TBIL, for linking users from different software communities.
Two famous communities, StackOverflow and Github, are
selected to validate the feasibility of our method. Differ to the
previous methods in software communities and those in social
networks, our method takes users’ skills into account, extract-
ing from tagging system in software communities. Besides,
our method also considers similarities between usernames and
those between user concerned topics. After extracting all these
kinds of heterogeneous features, Our method uses a machine
learning, Decision Tree, to assign a probability for each two
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users. Finally, a heuristic greedy algorithm is used to link users
with one-to-one constraints.
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