
Transfer learning for cross-platform software
crowdsourcing recommendation

Shuhan Yan∗, Beijun Shen∗†, Wenkai Mo∗, Ning Li∗
∗School of Software, Shanghai Jiao Tong University, Shanghai, China.

†bjshen@sjtu.edu.cn

Abstract—Recently, with the development of software crowd-
sourcing industry, an increasing number of users joined the
software crowdsourcing platforms to publish software project
tasks or to seek proper work opportunities. One of competitive
functions of these platforms is to recommend proficient projects
to developers. However, in such recommender system, there exists
a serious platform cold-start problem, especially for new software
crowdsourcing platforms, as they usually have too little cumu-
lative data to support accurate model training and prediction.
This paper focuses on solving the platform cold-start problem
in software crowdsourcing recommendation system by transfer
learning technologies. We proposed a novel cross-platform rec-
ommendation method for new software crowdsourcing platforms,
whose idea is trying to transfer data and knowledge from other
mature software crowdsourcing platforms (source domains) to
solve the insufficient recommendation model training problem
in a new platform (target domain). The proposed method maps
different kinds of features both in the source domain and the
target domain after a certain transformation and combination
to a latent space by learning the correspondences between
features. Specifically, our method is an instance of content-based
recommendation, which uses tags and keywords extracted from
project description in crowdsourcing platforms as features, and
then set weights for each feature to reflect its importance. Then,
Weight-SCL is proposed to merge and distinguish tag features
and keyword features before doing feature mapping and data
migration to implement knowledge transformation. Finally, we
use the data from two famous software crowdsourcing platform
as dataset, and a series of experiments are conducted to evaluate
the performance of the multi-source recommendation system in
comparison with the baseline methods, and get 1.2X performance
promotion.

Keywords—Tranfer Learning, Software Crowdsourcing, Recom-
mender Systems, Cold-start Problem

I. INTRODUCTION

A new upsurge in software crowdsourcing industry is in
the making recently. It can not only make full use of the idle
resources on the Internet and development resources which
can not be gathered together for geographical reasons, but
also mobilize collective intelligence to collaborate on software
development. This new type of development model, on the
one hand, can improve the efficiency of development; on the
other hand, can also enhance the competitive advantage of
enterprises, teams and programming elite. Undoubtedly, as
a kind of e-commerce platforms, a software crowdsourcing
platform requires a recommender system to make it easier for
users of the platform to discover projects they are interested
in and within their ability. However, there exists a difficult
problem in the recommendation system: the platform cold-start
problem. The cumulative data of a newly launched software

crowdsourcing platform is so small that it is difficult to support
the recommendation model training.

At present, we have not found a published research on
the platform cold-start problem of software crowdsourcing
recommendation. Most of existing recommendation algorithms
in crowdsourcing platforms focus on the traditional recom-
mendation problem which considers data in the platform is
sufficient to train a recommendation model. These methods can
be categorized to: Collaborative filtering[1][2], Content-based
approaches[3] and Hybrid approaches[4]. Collaborative filter-
ing (CF) approaches rely on past user behaviors, e.g., bidding
for or completing projects in software crowdsourcing, and do
not require the creation of explicit profiles, while content-based
approaches make recommendation by calculating the similarity
of developer and project profiles.

However, when new developers or projects sign up, the
platforms have no or little knowledge on them and thus cannot
make good recommendation by traditional methods, which
is also called the user or item cold-start problem. To solve
the cold-start problem, Singh Amit Pratap proposed a transfer
learning algorithm using collective matrix factorization[5], and
Li Bin proposed a rating-matrix generative model[6].

Although these methods can work well for new coming
users or project, they rely on abundant data of the platform
from other users or projects. For new platforms, most users and
projects are new, and with less information, so those methods
which can solve user or item cold-start problem cannot work
anymore. This is the hardest cold-start problem, called the
platform cold-start problem. As our best knowledge, there
is no research on the platform cold-start problem caused by
insufficient data. We consider transfer learning framework can
well solve the problem.

Transfer learning is used to improve a learner of one
domain by transferring information from a related domain. In
the study of transfer learning, Blitzer J proposed a feature-
based transfer learning algorithm named structural correspond-
ing learning (SCL)[7]. This algorithm finds features which
appear in both source domain and target domain to be the
pivot features, and maps the domain-specific features to pivot
features. Sinno Jialin Pan proposed a cross-domain transfer
learning algorithm using feature aligning[8]. However, these
algorithm can only be applied on the dataset which contains
only one kind of features, and in the software crowdsourcing
platform, there exist two kinds of features in a project: tag
feature and project description. Tag feature is a set of some
tag words, and project description is a text. These two kinds of
feature have different importance in recommendation system.
The existing algorithms are not well suited to this kind of data.

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.33

269

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.33

269

To solve the cold-start problem of the software crowdsourc-
ing recommendation platform, there exist several challenges:

1) How to build a generic data model for projects and
developers from different software crowdsourcing platforms
and how to calculate the similarity of projects and developers?

2) In order to solve the cold-start problem, how to use
source domain data which features are inconsistent with the
target domain features?

3) How to apply the transfer learning algorithm on datasets
with multiple kinds of features such as Tag feature and
Keyword feature?

For the above challenges, we proposed a transfer learning
algorithm based on the feature importance named Weight-
SCL, an improvement for SCL algorithm. In our algorithm,
we use tags and keywords extracted from project description
in crowdsourcing platforms as features, and then find out a
new representation of cross-domain word features to reduce the
differences between domains. By differentiating two types of
features and using words unrelated to the domain as a bridge,
Weight-SCL can be applied to multi-kind features. In addition,
a clustering algorithm is used to align two kinds of features into
the same feature cluster, which reduces the mismatch between
the two domains’ features. We use these clusters to represent
all the data instances and train the recommendation classifier
using the new representation.

The contributions of this paper include:

1) Through analyzing the data charicteristics on the soft-
ware crowdsourcing platforms, we build a uniformed model
for developers and projects in different platforms. In the
modeling phase, considering the special features of data from
software crowdsourcing, a method of computing the similarity
of projects and develpoers is proposed.

2) The transfer learning algorithm using feature mapping
named Weight-SCL was designed for the software crowdsourc-
ing platform data. This algorithm solves the problem of the
inconsistency of multi-kind features, and helps to combine and
distinguish two kinds of characteristics. The feature mapping
is implemented on this basis.

3) The data from the famous software crowdsourcing plat-
forms(Joint Force1, Zhubajie2) were used for the experiments.
The results of experiments show that the performance of the
multi-source recommendation system in comparison with the
basic SCL method has an improvement of 1.2X.

The rest of the paper is organized as follows. In the next
section, we firstly review some related works. Then describe
the problem we study and give some definitions in Section III.
We describe the modeling method and dataset construction in
Section IV. Then we present the idea behind our proposed
feature-based transfer learning approach. The details of our
solution are presented in Section V. We conduct a series
of experiments to evaluate the effectiveness of our proposed
solution in Section VI. Finally, we conclude our work in
Section VII.

1https://www.jointforce.com/
2http://www.zbj.com/

II. RELATED WORK

Our work is mainly related to two lines of researches:

A. Recommender System in Software Crowdsourcing Platform

Wired’s editors, Jeff Howe and Mark Robinson, coined
the term crowdsourcing in 2005 to describe how companies
use the Internet to outsource work to people[9]. Aniket Kittur
and Jeffrey V. Nickerson defined the common crowdsourcing
process in CSCW 2013[10]. Man-ching Y proposed to use
the history of users behavior to recommend a list of jobs
for users[11]. On this basis, this team further put forward
a way to establish model for users [12], through the user’s
information such as history of completed project and search
to build the model, and recommend projects to users using this
model. After that, this team also applied probability matrix de-
composition in software crowdsourcing recommendation[13].
Sooyoung Lee proposed to use dynamic programming for
separate recommendation of projects and users[14]. Y. Zheng
proposed a new algorithm using optimal selection technol-
ogy, which can recommend suitable users for the software
crowdsourcing projects[15]. Subsequently, researchers such as
Y. Zheng proposed a software crowdsourcing project recom-
mendation algorithm, which can recommend a quality project
to the users in linear time[16]. At the same time, J. Fan
et al. built a crowdsourcing platform called iCrowd [17],
which evaluates the user’s degree by assessing the user’s
historical data, thus recommend items for the recipient. In
SEKE2015, Zhao S. put forward a method for modeling the
projects and users respectively, which recommends items by
selecting the matching partner[18]. In APSEC2015, Jiangang
Zhu proposed a CRF-based model to extract criterias (i.e. skills
and locations) from descriptions to match a given task to
the right crowdworkers[19]. However, these algorithms have
severe cold-start problems, the recommendation model cannot
be fully trained when lacking historical data and the recom-
mended effect should be improved. In APSEC2016, a social
influence-based method is proposed by Ning Li to recommend
suitable tasks for both active and inactive developers for user
cold-start problem[20]. But there still existed no solution for
platform cold-start problem.

B. Recommendation Algorithm using Transfer Learning

In the past years, some researches has already applied
transfer learning technologies on traditional recommender
system using collaborative filtering, to solve the cold-start
problem. Ajit p. Singh proposed a transfer learning algorithm
using collective matrix factorization[5], whose main idea is
to use the entities involved in multiple domains to share the
feature factors of these entities to simultaneously decompose
multiple matrices. Li Bin designed a rating-matrix generative
model[6], whose main idea is that the relationship between
multiple domain scoring matrices can be established through
a potential cluster-level scoring matrix, and then this matrix is
shared to help predicting the missing field of the target domain
scoring matrix. Weike Pan et al. proposed a collaborative
filtering recommendation algorithm for Coordinate System
Transfer (CST)[21], which also transfers knowledge of users
and projects in the source domain to mitigate the sparseness
of the target domain data. Bin Li et al. Proposed a Codebook
Transfer (CBT)[22]. Based on a limited score in the target

270270

domain, the algorithm transfers the useful knowledge gained
from the learning tasks in the source domain by establishing
a bridge between the two domains scoring matrix. However,
there exist several problems on recommendation algorithm
using collaborative filtering: the quality of results heavily
depends on other users’ historical data; on sparse dataset the
recommend accuracy is not high. So we need to study how
to apply transfer learning on content-based recommendation
systems, and how to utilize the domain-specific features in
software crowdsourcing.

In the research of migration techinoloy, Blitzer J proposed
a transfer learning algorithm named structural corresponding
learning(SCL) [7] in 2006. This algorithm finds features which
appear in both origin domain and target domain to be the
pivot features, and map the domain-specific features to pivot
features. And then the pivot feature is added to the original
feature, or directly uses the pivot feature for training. The
application of SCL algorithm is very extensive, including part
of speech (PoS) tagging [23], sentiment classification[24],
and so on. Quattoni et al. [25] applied structural learning
to image classification in settings where little labeled data is
given. Sinno Jialin Pan proposed a spectral feature alignment
(SFA) algorithm to align domain-specific words from different
domains into unified clusters[8], with the help of domain inde-
pendent words as a bridge. In this way, the clusters can be used
to reduce the gap between domain-specific words of the two
domains, and train sentiment classifiers in the target domain
accurately. However, these algorithms can only be applied on
the dataset which contains only one kind of features, The
existing algorithms are not well suited to the data of software
crowdsourcing platform. We tried to build a recommendation
system on software crowdsourcing platform and further more
propose a transfer learning algorithm which is suited to the
data of different software crowdsourcing platforms.

III. PROBLEM DEFINITION AND APPROACH OVERVIEW

A. Problem Definition

We divide the data on the software crowdsourcing platform
into two entities: user U and project T . User could be further
devided into two categories U = {Dev,Emp}, where Dev
represents the developer, and Emp represents the employer.
We assume there are m developers and n projects in the
platform, in another word, |Dev| = m, |T | = n.

There exist some relationships between the user and the
project on the software crowdsourcing platform: employer will
publish some projects, so the Emp and T have a publishing
relationship between them; meanwhile, developers can apply
for the published projects, and each project will apply one or
more developers for resolving requirement issues after contract
negotiation. Finally, the developers will deliver their solution
and other artifacts to the employers, who will organize the
acceptance testing or review. Namely, Dev and T have three
kinds of relationships: apply, win − bid and accept. So the
relationships between project and user can be expressed as
R = {publish, apply, win−bid, accept}. So we represent the
data on the platform as (u, t, r) ∈ U × T × R. Each project
has some tags and a description. So ∀t ∈ T, t = {k, d}, where
k represents project description, and d represents project tag.

Fig. 1. Overview of Our Approach.

Following is the definition of transfer learning problem
for cross-platform software crowdsourcing recommendation:
In the source domain, given user Us = {Devs, Emps},
project Ts, relationship between project and user Rs; in the
target domain, given user Usert = {Devt, Empt}, project Tt,
relationship between project and user Rt. The recommendation
system needs to learn a model through Us × Ts × Rs and
Ut× Tt×Rt. The model will output a set of projects T ′ ⊆ T
which will be recommended to U ′ after inputting U ′ ∈ Devs
into the model.

B. Approach Overview

After analyzing the data of software crowdsourcing plat-
form, we propose a novel cross-platform software crowdsourc-
ing recommendation approach using transfer learning to solve
the insufficient data issue. The overview of our approach is
shown in Figure 1.

The whole approach consists of two phases:

1) Training phase: the target of this phase is to establish
recommendation model. First of all, we model for the projects
and developers of source domain and target domain. Then
we use a transfer learning algorithm proposed by us named
Weight-SCL algorithm on the word features of different do-
main. Finally, we train the recommendation model using linear
regression which applied instance-based transfer learning al-
gorithm Tr-Adaboost with simularity matrix, and get the final
recommendation model. We will introduce the Weight-SCL in
section V, and describe how to get model and then get the
simularity matrix in section IV.

2) Predicting phase: the main idea of this phase is to
recommend projects for developers using the model we trained
in the training phase. First of all, we model for the projects

271271

and developers of target domain, then we apply the parameter
trained in Weight-SCL on features. Finally we get the recom-
mendation result using the recommendation model trained in
the training phase.

IV. RESOURCE MODELING AND FEATURE ENGINEERING

The resources on the software crowdsourcing platform are
divided into projects and developers. In this section, we will
examine how these two types of resources are modeled, and
then construct similarity matrix.

A. Project modeling

In different software crowdsourcing platform, all of the
projects have some project tags and one project description,
where the project tag is a word and the project description is a
text. So we could directly convert tags belonging to a project
into a word vector, meanwhile we need to choose an algorithm
to extract some words from project description to establish a
word vector.

For combining these two kinds of word vectors in our
algorithm, we need to establish a common directory for all
words consisted in the tags and the words of descriptions.
We use Tk = {t1, t2, . . . , tn} to represent all the words that
appear in the description text, and use Tt = {t1, t2, . . . , tm}
to represent all tag words. The number of all keywords is m,
and the number of all tag words is n. After performing set
union on Tk and Tt , we get the directory D = {t1, t2, . . . , tl}
which consists of all words. The size of this directory is l.
For mapping each word to vector space, we define a function
φ(w), whose input is a word w, and output is the index of
corresponding directory location.

Because the project tag feature is a set of meaningful
words, we could convert tags of a project into a word vector
directly. Since there are only two status for each tag in a
project: marked or not marked, so we use BOW(Bag-of-Words)
method to convert word set into a binary valued vector, whose
component value is either 0 or 1. We initiate the vector as all
zero vector at the beginning, then check the tag word set. If a
word w appears in the tag word set, then the φ(w)′th value in
the vector will be replaced by 1. After project tag vectorization,
we get a matrix which expresses the tag information of all
projects on the platform, and we use TMt to represent this
matrix.

For representing a text, we could map each text to word
vector space. The final target is to use a keywords vector dj =
(w1j , w2j , . . . , wnl) to represent a text, where wij is the weight
of i′th word in text j, and the weight shows the importance of
the word. In this way, we convert the problem into how to cal-
culate the component of vector dj . We use TermFrequency−
InverseDocumentFrequency(TF − IDF) method to de-
scribe a text[26]. The method of obtaining the TF-IDF value
of k′th word in j′th text is showed as equation (1).

TF − IDF (tk, dj) = TF (tk, dj) ∗ log N

nk
(1)

TF − IDF (tk, dj) represents the frequency of the k′ th
word in the text j. nk is the number of the texts which contain
the k′ th word. After project description vectorization, we get
a matrix which expresses the keyword information extracted

from description of all projects on the platform, and we use
KMt to represent this matrix.

After calculating vectors of all project, we get the project
content matrix DMt = {TMt,KMt}. The solution on how
to get the matrix DMt will be described in section V.

When building similarity vector of the negative cases, we
need to sort the project according to project visibility, where
the project visibility is the possibility that the project could be
discovered by developer. So we need to establish the model
for project visibility.

First of all, we will yuintroduce the definition of the project
popularity which is given in equation(2).

Popr(j) =
∑

i

(apply(i, j)) (2)

In the above mentioned definition, the function apply(i, j)
returns 1 while there exists an application relationship between
the i′th developer and the j′th project, returns 0 otherwise. As
shown in this definition, the project popularity is represented
by the number of developers who apply for this project, which
means that the higher the number of application, the higher the
project popularity.

It is easy to observe that there exists a logarithmic rela-
tionship between the project retention time and the number of
application usually. The number of application usually gets a
rapid increase at the beginning of the project publishment, and
the growth rate of application slows down later significantly.
For balancing the projects with different retention time, we
propose a time factor to gain the true visibility. Considering
that the project which has a longer retention time should gain
a higher visibility than a new project, so we propose another
time factor to compensate for a project which has a longer
retention time after balancing.

The definition of the project j is shown as equation(3)

Pop(j) = α(ts, tc) ∗ Popr(j) + β(ts, tc) (3)

where α(ts, tc), β(ts, tc) are two time weight factors. We set
ts as the publishment time of the project. If someone’s bidding
has been accepted by the project, afterward set tc as the
project win-bid time, otherwise, set tc as data collection time.
According to the analysis as above-mentioned, we propose
α(ts, tc), β(ts, tc) as equation(4) and equation(5).

α(ts, tc) =
1

ln(tc − ts + 1)
(4)

β(ts, tc) = ln(tc − ts + 1) (5)

B. User modeling

In this subsection, we will model for developers. To es-
tablish the tag model and keyword model for developer u, we
use the vectors of the projects gained from project modeling
which have relationships with the developer u.

Let TM represent the project tag vector gained from the
method described in subsection IV.A. So the developer tag
vector is shown as following equation(6).

TMu,: = λA

∑

t∈Au

TMt,: + λB

∑

t∈Bu

TMt,: + λF

∑

t∈Fu

TMt,:

(6)

272272

Let KM represent the project keyword vector gained from
the method described in subsection IV.A. So the developer
keyword vector is shown as following equation(7).

KMu,: = λA

∑

t∈Au

KM t,:+λB

∑

t∈Bu

KM t,:+λF

∑

t∈Fu

KM t,:

(7)
In the equation(6) and equation(7), parameters λA, λB , λF

represent the apply weight, win-bid weight and accept weight
respectively. Au, Bu, Fu represent apply project set, win-bid
project set and accept project set of developer u respectively.
After calculating vectors of all developers, we get the devel-
oper content matrix DMu = {TMu,KMu}. The solution
on how to get the matrix DMu will be described in section
V. Considering the value of the weights, it goes without
saying that the feature of the projects which are completed
by developer could represent developer ability better than the
win-bid projects. While applying projects shows the least. So
λA > λB > λF . λA = 0.3, λB = 0.8, λF = 1.0 are set in our
experiment.

C. Feature engineering

In the establishing of recommendation system, we need
to define the similarity of project and developer, and then
we could match the project and developer according to the
similarity.

To establish an instance s of similarity matrix SM , first
of all, it is required to establish the similarity vector p of a
project t and a developer u. As equation (8)(9) shown, for the
i′th entry pi of p, using the absolute distance of the i′th entry
fu,i of developer feature vector fu ∈ DM t and i′ th entry ft,i
of project feature vector ft ∈ DMu to represent the similarity.
Since there exists a negative correlation between absolute
distance and similarity, we use a constant value m to minus
absolute distance to gain the similarity value. The constant
value m is named the maximum value of homogenization.

d = |fu,i − ft,i| (8)

pi = m− d (9)

We have made an in-depth analysis of the following four
situations:

Situation 1: a feature exists in the project vector, but doesn’t
exist in user vector.

Situation 2: a feature exists in the user vector, but doesn’t
exist in project vector.

According to equation (9), the situation 1 and situation
2 get same similarity value. But considering the real world
experiment, the similarity of situation 1 is lower than situation
2. And the reason is obvious: the requirement of project should
be more important than user’s ability. So while situation 1
happens, equation (10) is used instead of equation (9).

pi = m− a ∗ d (10)

where a is a factor bigger than 1. We could use a to gain a
lower similarity of situation 1. The factor a is named negative
feature factor.

Situation 3: a feature exists in both project and user vectors.

Situation 4: a feature doesn’t exist in any project and user
vector.

According to equation (9), the situation 3 and situation
4 get same similarity value. But considering the real world
experiment, the similarity of situation 4 is higher than situation
3. The situation 3 is rare and worthy of more attention, it shows
that the project requirement could be satisfied by the developer.
Meanwhile the situation 4 is more common, it shows the
phenomenon that the project doesn’t have a demand meanwhile
the developer doesn’t have the ability is not important. So
while situation 3 happens, using equation (11) instead of
equation (9).

pi = m− d− z (11)

where z is a factor bigger than 0. We could use z to gain
a lower similarity of situation 3. The factor z is named zero
feature factor.

Through the analysis shown above, we could get the i′th
feature’s similarity between a developer and a project, then
we could get the similarity vector p through the same way. We
use this similarity vector as the instance’s features consisted in
similarity matrix SM , and treat apply condition as instance’s
label. Provided that there is an application relation between
project and developer of an instance, then we set instance’s
label as 1, and this instance is called a positive instance;
otherwise, we set instance’s label as 0, and this instance is
called a negative instance. For an instance which is consisted
of a developer and a project, there are corresponding feature
vector p and tag l, s = {(p, l)|l = {0, 1}}. The vector s
form the matrix SM . We set the ratio of positive and negative

instances to k, k = |S1|
|S0| , where |S1| represents the number of

positive instances, and |S0| represents the number of negative
instances.

For positive instance establishment, we directly select the
developer and project with apply relationship. For negative
instance establishment, we need to choose a developer and
some of the projects which aren’t applied by this developer to
calculate the similarity. We preferentially use a highly exposed
project with no application. Compared to random project, a
project with higher visibility makes it less likely to come true
that a developer doesn’t apply for a project just because the
developer hasn’t seen the project before. In this way, we could
get the negative interest better. So we use the method which is
proposed in subsection IV.A to calculate the visibility Pop(t)
of project t, and sort projects according to this value. Then,
according to the sequence of the projects, we check whether
the application relationship exist between the developer and the
project. If so, we continue to check the next one; if not, we
use current project and developer to build a negative instance.

According to the analysis shown above, we need to assign
maximum value of homogenization m, negative feature factor
a, zero feature factor z and ratio of positive and negative
instances k. We choose m = 10, a = 2, z = 8, k = 1.2
assignment in following experiment for good performance.

V. WEIGHT-SCL : A TRANSFER LEARNING ALGORITHM

WITH FEATURE MAPPING

After data analysis and data modeling, we improve the
existing transfer learning algorithm SCL to make it adapt to
the data of software crowdsourcing platform, then he Weight-
SCL algorithm is formed. In this algorithm, we divided the

273273

features into two kinds: important feature and unimportant
feature. Specific to software crowdsourcing platform data, the
important feature is tag feature, and unimportant feature is key-
word feature. The importances of the two kinds of features are
different. In general, the important features of source domain
and target domain will not be all the same, there will exist quite
a few features which are domain-specific. And we observed
that some features between source domain important feature
and target domain unimportant feature are same, and some
features between source domain unimportant feature and target
domain importance feature are same. So if we can transform
and combine the important feature and unimportant feature,
then we could improve the number of important feature, and
improve the number same feature between source domain
and target domain. Therefore, we focus on answer following
questions: how to distinguish the feature importance, how to
combine the important features with unimportant features, and
how to transfer knowledge. The Weight-SCL algorithm we
proposed is a solution for those challenge.

A. SCL Algorithm

First of all, we need to introduce the origin SCL
algorithm[7]. Given the labeled data from the source domain
and unlabeled data from both source and target domains, SCL
first selects a set of m pivot features that appear frequently in
both domains. Then, training linear predictors for every pivot
features to predict occurrences of each pivot in the unlabeled
data to model the correlations between the pivot features and
other features [27]. The predictor for the l′th pivot feature is
characterized by its weight vector w′; positive entry in the
weight vector means that the non-pivot feature is related to
the corresponding pivot feature highly. The weight vectors of
each pivot can be arranged into a matrix W = [wl]

n
l=1 . Let

θ ∈ Rk×d (d represents the number of total features) be the
top k left singular vectors of W . These vectors are the major
predictors for our weight matrix. If we select our pivot features
well, then we expect these predictors to distinguish between
total features in both domains. At training and testing phase,
suppose there is a feature vector x. We use the projection θx
for k real valued features. Now we obtain a predictor for an
augmented instance {x, θx}. The predictor will perform well
in both source and target domains when θ contains meaningful
correspondence.

B. Example

In this subsection, we will use an example to introduce the
problem and challenge we face in multi-domain recommenda-
tion system.

First of all, we divide the word features into tag feature
and keyword feature. The tag feature is carefully designed by
the system developer, the number of tag feature is less, and
the tag feature has higher importance in project classification
and the project recommendation. And the keyword feature
is automatically extracted from the project description, the
number of keyword features is large, so there is a certain
degree of error rate. The words in keyword feature have
different effects on project classification, some of these words
are valid for classification problems, while others are not. In
this algorithm, we treat the tag feature as the important feature,
and keyword feature as unimportant feature. We will pay more

attention to important features, and use unimportant features
as a secondary data.

TABLE I. CROSS-DOMAIN CLASSIFICATION EXAMPLES

Domain Tag Description

Source Domain Java . . . To carry out related web
development work as required. . .

Source Domain UI, interface design . . . An interface design optimization
scheme is proposed for system. . .

Target Domain web development . . . The Web is developed using Java. . .

Target Domain HTML5, front-end . . . Make new HTML5 games based on
the game template. . .

TABLE II. CROSS-DOMAIN CLASSIFICATION EXAMPLES

Source domain Target domain

Tag Keyword Tag Keyword

Java web development web development Java

UI,interface design interface design HTML5,front-end HTML5

Consider the example presented in TABLE I. Each instance
in the source and target domain has some tag words and a
project description. By using the algorithm described in the
previous subsection, we can extract some keywords from the
project description. TABLE II describes the tags and keywords
in the source and target domain instances.

In the source domain, there are ”java”, ”web development”,
”UI” in tag word set, and there are ”web development”, ”inter-
face design”, ”java” in keyword set which are extracted from
project description. In the target domain, there are ”html5”,
”web development”, ”front-end” in tag word set, and there are
”html5”, ”java” in keyword set.

Consider using SCL algorithm on such data. Because there
is not multiple kinds of features in SCL, if we only use the
data of tag features, it goes without saying that it will cause
data waste. If we apply the SCL algorithm on the two kinds
of features separately, we cant gain any pivot feature because
of no feature word which appears on both two domains. But
we could observe that there are some unimportant features
which appear on important feature set. For example, ”web
development” appears in both tag set of source domain and
keyword set of target domain, ”java” appears in both tag set
of target domain and keyword set of source domain. So if we
could combine the tag features and keyword features in some
ways, we could get more pivot features. But if we directly
combine two features, the importance of tag feature will be
diluted by lots of unrelated words in keyword set. And for the
word which appears in both important feature and unimportant
feature, such as the word ”HTML5” in target domain, how to
combine such word value is also a question to be answered. In
addition, some of the pivot features extracted from all features
may have representative meaning, such as ”UI” and ”interface
design”, we can find out such words and cluster them. It
is helpful for using more representative words to represent
different kinds of projects.

C. Weight-SCL Algorithm

To solve the challenge shown above, we propose Weight-
SCL based on SCL algorithm, as Algorithm 1 shown. Weight-
SCL consists of 4 steps: SelectPivots, MergeFeature, TrainPiv-
otPredictors and ComputeSVD. We will explain them in the
following subsections.

D. SelectPivots

We need to select pivot features from all features in
source domain and target domain. The pivot feature needs to

274274

Algorithm 1 Weight-SCL algorithm

Input:
the unimportant features set from source domain KMS ;
the unimportant features set from target domain KMT ;
the important features set from source domain TMS ;
the important features set from target domain TMT ;
Parameter m, k, ϕ, γ:, w

Output:
predictor f

function SELECTPIVOTS(KMS ,KMT , TMS , TMT , ϕ, γ:,m)
P k̀, P t̀ = TransferFeature(KMS ,KMT , TMS ,
TMT , ϕ)
Pt = EliminateFeature(P t̀, γt)
Pk = EliminateFeature(P k̀, γk)
Cluster(Pk, Pt,m)

end function
function MERGEFEATURE(KM i, TM i, w) i ∈ {S, T}

Di = KM i + TM i × w
end function
function TRAINPIVOTPREDICTORS(Di, P)

D′ = {(Mask(x, p), In(x, p))|x ∈ Di}
for l=1 to m do

w = argmin(
∑

(x,y)∈D′
L(wx, y) + λ||w||2)

end for
Wi = [w′

1] . . . [w
′
m]

end function
function COMPUTESVD(Wi, k)[

UDV T
]
= SV D(W)

θi = UT
[1:k,1:|V |]

end functionreturn θi;

satisfy two conditions: 1) The pivot features must appear in
both the source and target domains and appear frequently. 2)
Pivot features need to have a greater impact on the project
recommendation.

In software crowdsourcing platform, there are two different
kinds of features, and there are overlapping between the
features. To gain pivot features better, we need to transfer some
unimportant features to important features.

P k̀, P t̀ = TransferFeature(KMS ,KMT , TMS ,
TMT , ϕ)

We use VS,K represents source domain important feature
word set, VT,K represents target domain important feature
word set, VS,T represents source domain unimportant feature
word set and VT,T represents target domain unimportant
feature word set separately. We choose a subset V ′

K,S =
VK,S ∪ VT,T − VK,S . And we also select a subset V ′

K,T =
VK,T ∪VT,S −VK,T . The meaning of this step is to select the
feature subset of the non-important features that appear in the
important features of the opposite domain. This word subset is
a part of the important feature words of the opposite domain,
and word subset can be used to represent the characteristics
of a project well. So we extract this part of the unimportant
features into important feature set. We add the word set V ′

K,S

into the word set V ′
K,S , and add the word set V ′

K,T into the
word set V ′

K,T . Finally, we get new word sets V of keyword
and tag from both two domains.

For converting some unimportant features into important
features, we need to change the value of the unimportant
features of instances. For an instance d = (xk, xt) in source
domain, where xk ∈ KMS is d′s unimportant vector, and
xt ∈ TMS is d′s important vector, if the i′th word entry of
xt occurs in word set V ′

K,S , and the value of this entry is
more than the threshold value ϕ, we will change this value
to 1. Also, for an instance d = (xk, xt) in source domain,
if the i′th word entry of xt occurs in word set V ′

K,T , and
the value of this entry is more than ϕ, we will change this
value to 1. The significance of this step is that the words that
appear in the changed important features are not necessarily
very important, and the important features need to represent
the characteristics of the project. Therefore, we consider the
entry value as an important degree. For the feature that the
value is less than a certain threshold ϕ, we consider that it
does not contribute to the characteristics of the representative
project. In our experiment, we select ϕ = 0.1 in order to keep
that we could get sufficient pivot features.

Then, we get a new data matrix after feature transforma-
tion. After this, we could get a word set P k̀ whose words
occur at both VS,K and VT,K . So P k̀ = KMS ∪KMT . And
we could get the word set P t̀ = TMS ∪ TMT in the same
way.

After feature transfer, we need to get the pivot features
from all the features:

P = EliminateFeature(P ,̀ γ)

We select a feature subset P from all the features P ′,
including all the features that appear simultaneously in the
source domain and target domain. Then we delete the features
of the feature set P whose frequency are less than a threshold
value γ. The residual feature in P is output as pivot feature
set.

The difference between important and non-important fea-
tures is that the selection of γ threshold is different. We
consider that the pivot feature of the important feature should
account for a large proportion. We choose the appropriate
thresholds γt, γk to get enough pivot features(more than m
pivots) and control 80% proportion of important features in
the whole pivot features.

Cluster(Pk, Pt,m)

In this step, we select m pivot features from word feature
set Pk ∩ Pt. The meaning of some word features which are
obtained after above steps might be very similar. Therefore,
we cluster those words and get m clusters, and use the nearest
word from the cluster center. We choose the k-means clustering
algorithm to cluster words, and the distance d between the two
vectors a and b is defined as equation(12).

d =
∑

(ai − bi)
2

(12)

E. MergeFeature

We hope that the features with higher importance can be
more fully exploited when training linear classifiers. Therefore,
we define a weight named importance weight w. For the
important feature, we multiply the weight and feature’s value.
In order to obtain a combined feature data, we add important
features and non-important features. The equation(13) is shown

275275

as follows. In our experiment, we use w = 10 as the
importance weight.

D = KM + TM × w (13)

F. TrainPivotPredictors

Weight-SCL models the correlations between each pivot
p ∈ P and all other words by training linear classifiers for
every pivot feature to predict whether or not pivot feature
occurs in a feature vector, with the help of the other features.
Due to this reason, for each pivot feature p ∈ P , a training set
D′ is created:

D′ = {(Mask(x, p), V alue(x, p))|x ∈ D}
Mask(x, p) returns a copy of x where the component asso-

ciated with the p word feature is removed, which is equivalent
to removing this word from the feature space. V alue(x, p)
returns the value of the component of x associated with the
word p. For each linear classifier for D which is characterized
by the parameter vector w, it is trained by minimizing Equation
(14) on D.

w = argmin(
∑

(x,y)∈D′
L(wx, y) + λ||w||2) (14)

Noted that positive entry in the weight vector means that
the non-pivot feature is related to the corresponding pivot
feature highly.

G. ComputeSVD

Weight-SCL identifies correlations across pivots by com-
puting the singular value decomposition of the |V | × m-
dimensional parameter matrix w = [w′

1] . . . [w
′
m]. We com-

pute a low-dimensional linear approximation to feature of pivot
feature for computation reasons.

[
UDV T

]
= SV D(W) (15)

Noted that W encodes the covariance of pivot and non-
pivot features. The rows of U identify common substructures
among these multiple classifiers. We choose the rows of U
associated with the largest singular values yields, then define
θ=UT

[1:k,1:|V |] as those rows of U which are top k largest
singular vectors of W .

Furthermore, θS ∗ DS is the desired mapping of low
dimensional feature representation of source domain words
relation, and θT ∗DT is the desired mapping of target domain
words relation. We could get a tighter representation of project
features through this way. The feature matrix DM described
in subsection IV.A and subsection IV.B is calculated by θ ∗D.
Then we could compute the similarity matrix SM on this new
representation θ ∗D using approach shown in subsection IV.C
between developer feature vector and project feature vector.
Finally, the recommendation predictor is trained on the dataset
SM , where s = {(p, l)|l = {0, 1}} ∈ SM . Noted that in our
experiment, the linear regression algorithm was used to be the
recommendation predictor.

VI. EXPERIMENTS

In this section, we first present our experimental settings
and then analyze experiment results. Two experiments were
conducted: 1) We verified our method in proving that with the
increase of the number of pivot features, the recommended
accuracy will rise; 2) We compared Weight-SCL with other
approaches to recommend suitable projects to developers.

A. Data Sets

We selected two well-known software crowdsourcing plat-
forms: Zhubajie, Joint Force. Each platform has its own
data characteristics, but our algorithm used only the project
description information, project tags information and developer
information who has apply/win-bid/accept relationships with
the project. TABLE III shows the details of the data on
the software crowdsourcing platform. From the website of
Zhubajie we crawled 6000 projects, 10597 developers and
48769 application relationships; from the Joint Force we
crawled 2,800 projects, 5231 developers, and the number of
relationships is 15498.

TABLE III. DATASET FROM TWO TYPICAL SOFTWARE

CROWDSOURCING PLATFORMS IN CHINA

Software
couwdsourcing
platform

The number of
projects

The number of
developers

The number of
relationships

Zhubajie 6000 50597 487690

JointForce 2800 4131 15498

As the data of Joint Force is significantly less than the
data of Zhubajie, we used the data of the Zhubajie as the
source domain data and used the data of Joint Force as the
target domain data, and transfered the data from the Zhubajie
platform to the Joint Force platform.

B. Comparison Method and Baseline Method

We used ICBNN algorithm to simulate the existed software
recommendation system. ICBNN is content-based neighbor
algorithm. It uses the content matrix to calculate the similarity.
Equation(16) illustrates how the similarity of developer u and
project i is calculated in the algorithm.

ICBNNsimu,i =

∑
i′∈Ik

simi,i′ ∗ Uu,i′

k
(16)

where simi,i′ represents the degree of similarity between
projects; Ik gives the top-k projects which are most similar to
project i by calculating the similarity of the cosine of the row
vector in the content matrix of the corresponding projects;Uu,i′

represents whether or not developer u applied project i before.
It returns 1 if applied, and returns 0 otherwise.

And we use linear regression as baseline method to com-
pare with SCL algorithm and describe the effect of the transfer
learning.

C. Evaluation Metrics

In this paper, we selected the two indicators P@k and
R@k to evaluate the performance of the proposed algorithm.
P@k reflects the recommendation accuracy, that is, in the
recommended top-k project, how many projects are related
to the existence of applied developers; and R@k reflects the
recall rate, that is, in the test set how many projects which

276276

Fig. 2. P@10 Results of Weight-SCL as a function of the number of Pivots
m

need to be recommended are in top-k projects recommended
by algorithms.

In the recommendation algorithm, if we treat a developer u
as an input, the algorithm will return a collection of projects,
each of which has a corresponding training value, representing
the matching degree of developer and project. The algorithm
can sort the training values and obtain a recommended se-
quence for u.

Assuming that the sequence obtained after sorting is lu,
the function h(k, lu) is defined, which inputs a sequence that
returns the projects of top-k in the list. We evaluated the
recommended results using the equation(17) and equation(18).

P@k =
1

|Dev|
∑

u∈Dev

∑
i∈Testu

1{i ∈ h(k, lu)}

k
(17)

R@k =
1

|Dev|
∑

u∈Dev

∑
i∈Testu

1{i ∈ h(k, lu)}

|Testu| (18)

where Testu represents the project set corresponding to the
developer in the test set; Dev represents the developer set.

D. Experiment about the Number of Pivots

The Figure 2. shows the influence of the number of pivots
m on the performance of Weight-SCL. The plots show that
even a small number of pivots could get a higher accuracy,
which means it captures a significant amount of the correspon-
dence between source domain and target domain. And with the
increase of the number of pivot features, the recommendation
accuracy will rise. And our method could help improving the
number of pivots, so it could help improving the recommenda-
tion accuracy afterwards. And in the experiment of comparing
Weight-SCL with other approaches, we selected m = 150 as
the number of our pivot features.

E. Recommendation Compared with Other Approaches

First of all, we will introduce the application of three
algorithms: ICBNN algorithm was trained and tested on the
JointForce data set, meanwhile SCL algorithm and Weight-
SCL algorithm were trained in the Zhubajie and JointForce
data set, tested in the JointForce data set. We divided the
data from JointForce into 10 parts, and tested all algorithms in

one part; trained the ICBNN model with other 9 parts, trained
SCL and Weight-SCL with whole Zhubajie Dataset and other
9 JointForce data set parts. For the SCL algorithm training ,we
applied it on the two kinds of features separately.

From the data shown in Figure 3 and Figure 4, we can see
that the performance of the three algorithms on P and R is
basically the same, that is, the multi-source recommendation
algorithm had significantly higher accuracy and recall rate than
the SCL algorithm; the accuracy and recall rate of multi-source
recommendation algorithm are much higher than single-source
recommended algorithm. The analysis of the test result is
shown as follows: the multi-source recommendation algorithm
used the weight-SCL algorithm for the two kinds of feature
problems, which is much better than the basic method of the
SCL algorithm. Compared with the single-source recommen-
dation algorithm, the multi-source recommendation algorithm
transfered the data of Zhubajie platform, so the data set has
been greatly expanded. And Weight-SCL increased the number
of pivot features by transfering and combining the features,
which is illustrated in the experiment about the number of
pivots that with the increase of the number of pivot features,
the recommendation accuracy will rise. So the effect of our
algorithm had a 1.6X upgrade than ICBNN algorithm and 1.2X
upgrade than SCL algorithm on accuracy and recall rate.

VII. CONCLUSION AND FUTURE WORK

This paper adopts transfer learning approach to solve
platform coldstart problem in software croudsourcing plat-
form recommendation system. We try to transfer data from
other software crowdsourcing platforms to expand the training
dataset. We use tags and keywords extracted from project
description as features in the recommender system, and design
a method to calculate the similarity of projects and developers.
Furthermore, Weight-SCL algorithm we proposed maps differ-
ent kinds of features both in the source domain and the target
domain after a certain transformation and combination to a
latent space by learning the correspondences between features.
The experiments were designed to verify the performance
of the multi-source recommendation system in comparison
with the basic SCL method, using the data from two famous
software crowdsourcing platforms. The experimental results
show it gets 1.2X performance promotion in accuracy and
recall rate.

In the future work, several aspects of research is still
worthy: 1) Currently we only use the content-based recommen-
dation algorithm to construct the recommendation system, so
we will further introduce the collaborative filtering algorithm
to establish a hybrid recommendation system, and propose an
improved transfer learning approach on it. 2) In this paper, we
only utilize the data information of the recommendation system
to map the features, and the next step we will research on how
to map the features using the data of the existing knowledge
base.

ACKNOWLEDGEMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242). Thanks JointForce for provid-
ing the experimental data set.

277277

(a) p@5 (b) p@10 (c) p@15
Fig. 3. Accuracy Results of Project Recommendation in Software Crowdsourcing Platform

(a) r@5 (b) r@10 (c) r@15
Fig. 4. Recall Results of Project Recommendation in Software Crowdsourcing Platform

REFERENCES

[1] Yehuda Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 426–434. ACM, 2008.

[2] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceed-
ings of the 10th international conference on World Wide Web, pages
285–295. ACM, 2001.

[3] Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Towards task
recommendation in micro-task markets. In AAAI Conference on Human
Computation, pages 80–83, 2011.

[4] Robin Burke. Hybrid recommender systems: Survey and experiments.
User Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[5] Amit Pratap Singh, Girijesh Kumar, and Rajeev Gupta. Relational learn-
ing via collective matrix factorization. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 650–658,
2008.

[6] Bin Li, Qiang Yang, and Xiangyang Xue. Transfer learning for collab-
orative filtering via a rating-matrix generative model. In International
Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June, pages 617–624, 2009.

[7] John Blitzer, Ryan Mcdonald, and Fernando Pereira. Domain adaptation
with structural correspondence learning. In Conference on Empirical
Methods in Natural Language Processing, pages 120–128, 2006.

[8] Sinno Jialin Pan, Xiaochuan Ni, Jian Tao Sun, Qiang Yang, and
Zheng Chen. Cross-domain sentiment classification via spectral feature
alignment. In International Conference on World Wide Web, WWW
2010, Raleigh, North Carolina, Usa, April, pages 751–760, 2010.

[9] William Safire. No uncertain terms : more writing from the popular
”On language” column in The New York times magazine. Simon &
Schuster, 2013.

[10] Aniket Kittur, Jeffrey V. Nickerson, Michael Bernstein, Elizabeth Ger-
ber, Aaron Shaw, John Zimmerman, Matt Lease, and John Horton.
The future of crowd work. In Proceedings of the 2013 conference
on Computer supported cooperative work, pages 1301–1318, 2013.

[11] Man Ching Yuen, Irwin King, and Kwong Sak Leung. Task matching
in crowdsourcing. In Internet of Things, pages 409–412, 2012.

[12] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. Task recom-
mendation in crowdsourcing systems. In International Workshop on
Crowdsourcing and Data Mining, pages 22–26, 2012.

[13] Man Ching Yuen, Irwin King, and Kwong Sak Leung. TaskRec: Proba-
bilistic Matrix Factorization in Task Recommendation in Crowdsourcing
Systems. Springer Berlin Heidelberg, 2012.

[14] Sooyoung Lee, Sehwa Park, and Seog Park. A quality enhancement
of crowdsourcing based on quality evaluation and user-level task

assignment framework. In International Conference on Big Data and
Smart Computing, pages 60–65, 2014.

[15] Y Zheng, R Cheng, S Maniu, and L Mo. On optimality of jury selection
in crowdsourcing. Intl.conf.on Extending Database Technology Brussels
Belgium, 2015.

[16] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and Jianhua
Feng. Qasca:a quality-aware task assignment system for crowdsourcing
applications. In ACM SIGMOD International Conference on Manage-
ment of Data, pages 1031–1046, 2015.

[17] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian Lee Tan, and Jianhua Feng.
icrowd: An adaptive crowdsourcing framework. In ACM SIGMOD
International Conference on Management of Data, pages 1015–1030,
2015.

[18] Shixiong Zhao, Beijun Shen, Yuting Chen, and Hao Zhong. Towards
effective developer recommendation in software crowdsourcing. In
The International Conference on Software Engineering and Knowledge
Engineering, pages 326–329, 2015.

[19] Jiangang Zhu, Beijun Shen, and Fanghuai Hu. A learning to rank
framework for developer recommendation in software crowdsourcing.
In Software Engineering Conference, pages 285–292, 2015.

[20] Ning Li, Wenkai Mo, and Beijun Shen. Task recommendation with
developer social network in software crowdsourcing. In 23rd Asia-
Pacific Software Engineering Conference, APSEC 2016, Hamilton, New
Zealand, December 6-9, 2016, pages 9–16, 2016.

[21] Pan W, Xiang E W, Liu N N, and et al. Transfer learning in collaborative
filtering for sparsity reduction. In AAAI, pages 230–235, 2010.

[22] Bin Li, Qiang Yang, and Xiangyang Xue. Can movies and books
collaborate? cross-domain collaborative filtering for sparsity reduction.
In IJCAI 2009, Proceedings of the International Joint Conference on
Artificial Intelligence, Pasadena, California, Usa, July, pages 2052–
2057, 2009.

[23] Sihong Xie, Wei Fan, Jing Peng, Olivier Verscheure, and Jiangtao Ren.
Latent space domain transfer between high dimensional overlapping
distributions. In International Conference on World Wide Web, pages
91–100, 2009.

[24] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bol-
lywood, boomboxes and blenders: Domain adaptation for sentiment
classification. Acl, 31(2):187–205, 2007.

[25] C Mcdevitt, E Gilbertson, and H Muir. Learning visual representations
using images with captions. In Computer Vision and Pattern Recogni-
tion, 2007. CVPR ’07. IEEE Conference on, pages 1–8, 2007.

[26] G. Salton and Clement T. Yu. On the construction of effective
vocabularies for information retrieval. Acm Sigplan Notices, 10(1):48–
60, 1973.

[27] Rie Kubota Ando and Tong Zhang. A framework for learning predictive
structures from multiple tasks and unlabeled data. Journal of Machine
Learning Research, 6(3):1817–1853, 2005.

278278

