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Abstract—Software defect prediction is an important software
quality assurance technique. It utilizes historical project data
and previously discovered defects to predict potential defects.
However, most of existing methods assume that large amounts of
labeled historical data are available for prediction, while in the
early stage of the life cycle, projects may lack the data needed for
building such predictors. In addition, most of existing techniques
use static code metrics as predictors, while they omit change
information that may introduce risks into software development.
In this paper, we take these two issues into consideration, and
propose a semi-supervised based defect prediction approach -
extRF. extRF extends the classical supervised Random Forest
algorithm by self-training paradigm. It also employs change burst
information for improving accuracy of software defect prediction.
We also conduct an experiment to evaluate extRF against three
other supervised machine learners (i.e., Logistic Regression,
Naive Bayes, Random Forest) and comparing the effectiveness
of code metrics, change burst metrics, and a combination of
them. Experimental results show that extRF trained with a
small size of labeled dataset achieves comparable performance
to some supervised learning approaches trained with a larger
size of labeled dataset. When only 2% of Eclipse 2.0 data are
used for training, extRF can achieve F-measure about 0.562,
approximate to that of LR (a supervised learning approach)
at labeled sampling rate of 50%. Besides, change burst metrics
outperform code metrics in that F-measure rises to a peak value
of 0.75 for Eclipse 3.0 and JDT.Core.

Keywords—Defect Prediction; Software Quality Assurance;
Semi-supervised Learning; Change Metrics.

I. INTRODUCTION

Software Defect Prediction is one of the most importan-
t software quality assurance techniques. Ensuring software
quality is a complex and time-consuming activity. Defect
prediction models can be used to direct test effort to defect-
prone code. Latent defects can be detected in code before
the system is delivered to users. Each year defects of code
cost industry billions of dollars to find and fix. Models which
predict defects efficiently have the potential to save companies
a large amount of money. Since the costs are so huge, even a
small improvement in ability to find and fix defects can make
a significant difference to cost reduction.

Many defect prediction methods have been proposed in
recent years. For example, Akiyama [1] proposes that the
number of software defects in the early software development
phase has a relation with the lines of code. The equation
D = 4.86 + 0.018L holds, showing that there are approx-
imately 22.86 defects per thousand lines of code. Menzies
et al. [2] build defect prediction models based on 21 static
code attributes. Kim et al. [3] predict defects by caching
locations that are adjusted by software change history data.

Nagappan et al. [4] propose to extract principle components
from metrics and use these principle components for defect
prediction. Zimmermann and Nagappan [5] propose models
based on the structural measurement of dependency graphs.

In the literature, metrics used in defect prediction can be
divided into four categories: code complexity metrics, code
churn information, change history, and structure of software
development organizations. Different kinds of software metrics
and machine learning methods (or statistical methods) elabo-
rate to construct prediction model. The model is then used
to predict defect-proneness for modules of which the fault
content is unknown.

A. Motivation

Most of existing defect prediction methods are supervised,
which assumes defective information of historical data is
sufficient and available. As shown in figure 1, supervised-
learning models are trained on labeled dataset, for which the
defective or defect-free information are known. Intuitively,
larger the size of the training set, better the accuracy of
prediction. However, projects often lack such data during the
early phase of software development. When the size of training
dataset is small, prediction performance could be dramatically
reduced. Thus, here exists a constraint on supervised learning
- the size of labeled training dataset should be as large as
possible.

Another limitation is that, most of existing techniques use
static code metrics as predictors, but static code metrics can
not show change information in software development. It has
been believed that change information may bring serious risks
to software artifacts [6]. Without change information, effective
defect prediction is difficult to achieve.

Considering problems mentioned above, we propose a semi-
supervised based defect prediction approach - extRF. In par-
ticular, we try to answer the following questions:
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Fig. 1: Defect Prediction with Supervised Learning
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Fig. 2: Overview of Semi-supervised Approach - extRF

RQ1: How to design an effective approach when few mod-
ules with defect content are known?

RQ>: Can the semi-supervised learning approach with few
labeled data samples achieve comparable results to the su-
pervised learning approach with a larger set of labeled data
samples?

RQs3: Are change burst metrics more efficient than static
code metrics for defect prediction?

B. Contribution

Unlike the defect prediction with supervised learning (see
Figure 1), extRF is a semi-supervised learning approach to
software defect prediction. It extends the classical supervised
algorithm [7] named Random Forest [8] by incorporating
the self-training paradigm [9]; it also employs change burst
information for improving the accuracy of software defect
prediction. As figure 2 shows, the process of extRF includes
four steps. First, we sample a small percentage of modules
from data set, and assumes their defective information are
known (i.e. labeled dataset). These sampled data set are used
to train a prediction model (Step 1). Then we use the model
to predict the defectiveness of remaining unsampled data set,
which are assumed as unlabeled data set (Step 2). The most
confident samples are selected out, and used to refine the initial
model (Step 3). Finally, the refined model is used to predict
the defectiveness of new software modules (Step 4).

The contributions of our work can be summarized as the
following three points:

o For determining which unlabeled samples are confident
enough to label, extRF adopts the majority voting strategy
from Random Forest.

« We introduce a boosting [10] process into extRF to decide
the weight of each base learner. The final prediction result

is produced by a weighted combination of component
classifiers (i.e. random tree), instead of unweighted ma-
jority voting. Research from David Bowes et al. [11] has
shown that ensembles not based on majority voting are
likely to perform best.

o We also conduct a series of experiments for evaluating
extRF and compare the effectiveness of code metrics
and change burst metrics. Experimental results show that
extRF trained with a small size of labeled dataset achieves
comparable performance to some supervised learning
approaches trained with a much larger size of labeled
dataset. Especially, when only 2% of Eclipse 2.0 data
are used for training, extRF achieves an F-measure value
of 0.562, close to that of LR (a supervised learning
approach) at labeled sample rate of 50%. Besides, change
burst metrics outperform code metrics in that the corre-
sponding F-measure achieves a peak value of 0.75 when
applied to extRF.

Note that our extRF approach requires neither the data
which should be described by sufficient defectiveness infor-
mation, nor the special learning algorithms which frequently
employ time-consuming cross validation in learning. Thus,
extRF could be easily applied in Software Defect Prediction.

The rest of this paper is organized as follows: Section
IT presents methodology for our optimized Random Forest
approach. In Section III, we describe the experiments and
then analyse the results. In Section IV, we provide a general
discussion of commonly used defect prediction techniques and
metrics. Finally, conclusions and future work are offered in
Section V.



II. METHODOLOGY

Our study aims to provide an effective and practical ap-
proach for identifying fault-prone files, when historical data
with defective or defect-free information is not sufficient. In
this section, we discuss the design and application of our
approach.

In software quality prediction, Random Forest appears to
offer consistently good performance across different data
sets [12]. One of the reasons for good performance is its
robustness to noise. But it only fits for supervised learning, in
which large amounts of labeled data samples exist in training
dataset. In practice, defect information of code files are often
lacked in the early phase of software life cycle. To address
this problem, we extend Random Forest into a semi-supervised
setting.

We first clarify the notation. Let X be a (n +m) x p matrix
that denotes software features. n is the size of labeled dataset
L and m is the size of unlabeled dataset U. Specifically, X =
(X1, X.)T, where X; = (21,22,...,2,)T and X, = (v, +
Ly +2,...,%ntm)T. In addition, let the (n+m) x 1 vector
Y = (V3,Y.)7 be the labels where Y; = (y1,%2,...,%n)"
are known and Y, = (Y41, Ynt2, -+, Yntm) are unknown.
The observed labels are binary variables, y; € {0,1}, where
0 denotes the absence of faults and 1 denotes faulty modules.

Our approach is composed of four steps. First, we train
a Random Forest model on L, and it is used to predict on
unlabeled data set U. Different random trees have different
prediction results. Second, we count the degree of agreement
(denoted as confidence) for each data sample. Third, we select
out M most confident data samples. These data samples are
added into a new data set L’ along with their voting labels. At
last, a boosting procedure is conducted and a specific weight
is set to each random tree.

A. Semi-supervised learning - extRF

Several researches have been proposed by extending Ran-
dom Forest model to fit semi-supervised learning setting. M.
Li et al. [13] propose a novel active semi-supervised learning
method ACoForest which is able to sample the modules that
are helpful for learning a good prediction model. They present
an iteration process. For each random tree h; , a concomitant
ensemble H_; is constructed to label the unlabeled dataset.
Then the unlabeled data samples whose labeling confidences
are above threshold 6 will be used to refresh h;. H. Lu et
al. [14] propose a self-training approach, which initializes a
Random Forest model on labeled data samples. They refine
each base learner (i.e. random tree) through an iteration
process, by expanding the labeled dataset from unlabeled
dataset. Both of them have the following disadvantages:

e When the dataset is too large, the process of predicting
the unlabeled data set in each iteration is very time-
consuming.

e The ensemble result is just based on majority voting of
each random tree. But in practice, different random tree
may have different prediction power on unlabeled data
set.

TABLE I: DESCRIPTION OF EXTRF ALGORITHM

Algorithm: extRF

Input: labeled data set L, unlabeled dataset U
threshold 6, number k
the number of random trees N
Output: weight o for each random trees

Procedure:

1: train a Random Forest model on L with N random trees H
= {h1,h2,...,hr}

2: use current Random Forest model to predict U

3: find those data samples of which the confidence exceeds
the threshold 6, and pick out top k of them

4: add the selected data samples along with their voting
labels into L, to form a new data set L’

5: Repeat until each h; in H has been set a weight o

6 initialize the weight vector of data samples in L’

7: For each random tree ht in H,

8 update hy with L’

9 calculate the error rate £; of h¢

10: calculate the weight oy of ht
11: update the weight vector of data samples in L’
12: end For

13: End of Repeat
14: Return weight o

Different from their approaches, we predict unlabeled data
set only once by using the initial Random Forest model.
Then we select the most confident data samples out. Table I
describes details of our extRF approach. When deciding the
confidence of a corresponding data sample, we use the ma-
jority voting schema. That is, if the number of voting for a
specific label (0 or 1) exceeding a given threshold 6, then it
is added into a new set along with the voting results.

After picking out these confident unlabeled data samples, we
introduce a boosting process into Random Forest algorithm.
A specific weight is then assigned for each random tree.

We combine the labeled dataset and the selected data
samples along with their voting labels into a new data set
L' = {Xy,Yy}. Assume there are k data samples selected
out, then there are total n+ k data samples in L’. We initialize
the weight of each data sample in L’ as

DQ:L where 1 = {1,2 n+k}
Yon+k’ e

Then in ¢-th iteration, the random tree h; is updated by the
expanding data set I’. And the error rate of h, is calculated
by

)

n+k

er = Y DiI(hi(x:) # yi) 2
i=1

where I(.) is an indicator function showing whether the
predicting result is consistent with Yj/.

The weight of random tree h; is calculated based on the

error rate.
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Next we update weight of each data sample in L'.
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We aim to increase the weights of misclassified data sam-
ples, and decrease the weights of data samples classified
correctly. Each random tree in Random Forest is refined with
these weighted data samples. By enhancing the influences of
misclassified data samples, the accuracy of prediction model
is presumably improved.

If each random tree has been set to a specific weight,
the iteration procedure ends. The final strong classifier is a
weighted linear combination of each weak classifiers:

H(z) =Y ath(z) )

B. Ensemble learning

In our extRF approach, we introduce a boosting process into
the well-known Random Forest algorithm, in order to assign
a specific weight for each random tree.

Boosting and Random Forest all belong to the machine
learning setting called Ensemble Learning [7]. Ensemble learn-
ing paradigms train multiple weak classifiers and then com-
bine their predictions. Ensemble techniques can significantly
improve the generalization ability of single classifiers.

An ensemble is usually built in two steps. The first step
is to generate multiple component classifiers, and the second
step is to combine their predictions. According to the way to
generate component classifiers, ensemble learning algorithms
fall into two categories — algorithms that generate component
classifiers in parallel, and algorithms that generate component
classifiers in sequence. Bagging [15] is one representative of
the first category. It generates each classifier on an example
set bootstrap [16] sampled from the original training set in
parallel, and then combines their predictions using majority
voting. Other well-known algorithms in the first category
include Random Subspace [17] and Random Forest [8]. In the
second category, the representative algorithm is AdaBoost [18]
, which sequentially generates a series of classifier focus on
the training examples that are misclassified by the former clas-
sifiers. Other well-known algorithms in the second category
include Arc-x4 [19] and LogitBoost [20].

Our extRF approach first trains a Random Forest model on
labeled data samples. And then we use the model to predict
unlabeled data samples. The most confident data samples are
selected out to refine each random tree in Random Forest. Each
weak classifier (ie. random tree) in Random Forest is assigned
a same weight. But corresponding to classification accuracy,
they vary from each other. A simple linear combination with
equal weights of them may not improve prediction perfor-
mance of the ensemble effectively. In order to enhance the
influence of those component classifiers with high predictive

power, we introduce a boosting process into initial model.
Each component classifier is assigned a specific weight. Thus,
the random tree with high accuracy has stronger impact on
final prediction model.

C. Base learner of the ensemble

One important factor in ensemble learning is how to choose
the base learner. The performance improvement of each
component classifier does not necessarily lead to the perfor-
mance improvement of the ensemble. According to Krogh and
Vedelsby [21], an ensemble exhibits its generalization power
when the average error rate of component classifiers is low,
and the diversity between component classifiers is high. To
obtain good performance, the diversity between component
classifiers should be maintained when the ensemble exploits
the unlabeled data.

To maintain the diversity in the semi-supervised learning
process, a well-known ensemble method named Random For-
est [8] is used to construct base learners in extRF. Since
Random Forest injects certain randomness in the tree learning
process, any two trees in the Random Forest could still be
diverse even if their training data are similar.

III. EVALUATION AND RESULTS ANALYSIS

We have performed a series of comparative experiments
on Eclipse data set. Results show that extRF is superior to
traditional supervised approach on three data sets (except
SWT), when little labeled historical data is available. ExtRF
with few labeled data samples performs comparable to that
of supervised model trained with a larger labeled data set.
Besides, change burst model outperforms code model among
all the four defect prediction approaches. Especially when we
combine extRF with change burst metrics, accuracy increases
extremely high.

A. Experiment Setting

We adopt three widely used machine learners: Logistic
Regression, Naive Bayes, and Random Forest. To evaluate
good performance of change bursts metrics and our approach
extRF, we conduct a series of comparative experiments.

Table II shows the combination of different prediction
models and different metrics.

Next we illustrate sample-based evaluation process of su-
pervised and semi-supervised defect prediction, as Figure 3
shows.

TABLE II: COMBINATION OF DIFFERENT PREDICTION
MODELS AND DIFFERENT METRICS

Code Metrics Change Burst Metrics Composed Metrics
LR CMxLR CBMxLR CompMxLR
NB CMxNB CBM xNB CompM xNB
RF CMxRF CBM xRF CompM xRF
extRF CM x extRF CBM xextRF CompM x extRF
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Fig. 3: Sample-based Evaluation Process of Supervised and
Semi-Supervised Prediction

1) Prediction with supervised learners: We first perform
experiments to evaluate the effectiveness of the defect predici-
ton models constructed using randomly selected samples and
supervised machine learners. For each data set, we randomly
sample a small portion of modules as the labeled training
set according to a sampling rate p, while the remaining
data samples are used as unlabeled and testing set. Here we
use five different sampling rates {2%, 5%, 10%, 25%, 50%},
in order to explore influence of different sampling intensity.
The labeled data set is used to initiate machine learners.
The remaining unlabeled data set is taken as testing set. We
repeat the sampling process for 100 times, and the average
performance of the compared method is recorded.

2) Prediction with semi-supervised learners: Then we per-
form experiments to evaluate the effectiveness of the defect
prediction models constructed using random sampling and
semi-supervised learning. Following the same experimental
setting described above, for each data set, we use five different
sampling rate {2%, 5%, 10%, 256%, 50%}. The labeled data
set is used to initiate Random Forest. Part of the unlabeled
data will be selected out, and then the remaining unlabeled
data set is taken as testing data set. For each of the 20
experimental settings (4 data sets x 5 sampling rates), we
repeat the sampling process for 100 times and the average
results are recorded.

B. Dataset

We perform our experiments on the Eclipse platform. E-
clipse is a popular open source system that has been extensive-

TABLE III: DEFECTIVE INFORMATION OF DATASET

Data set Instances  Defective Modules
Eclipse 2.0 6729 2611 (38.80%)
Eclipse 3.0 9740 7948 (81.6%)
JDT.Core 939 502 (53.46%)
SWT 843 208 (24.67%)

ly studied before. In the experiment, we focused on the metrics
on two versions (Eclipse 2.0 and 3.0) and two components
of version 3.0 (org.eclipse.jdt.core and org.eclipse.swt). We
download the repository from CVS' and the bug reports from
Bugzilla®. Table III shows the defects information in these
datasets.

Metrics used in this experiment are shown in below:

1) Code Metrics: Source code downloaded from CVS are
preprocessed, and only files with defect history in Bugzilla
are left and tracked. Understand® tool is used to extract code
metrics. Table IV(a) shows some common file-level metrics
used in our experiment.

2) Change Burst Metrics: Nachiappan Nagappan et al. [22]
introduce the concept of change bursts and extract them from a
series of changes. A change burst is a sequence of consecutive
changes. It is defined by two parameters — gap size and burst
size. Figure 4 illustrates how to determine a change burst. Gap
size is the minimum distance between two changes. Burst Size
is the minimum number of changes in a burst. Increasing gap
size yields longer bursts, and increasing burst size eliminates
shorter bursts. They conducted an empirical study on Windows
Vista, and found that the features of such change bursts have
the highest predictive power for defect-prone components.
They also provided an open data set* for four versions of
Eclipse, but have not analysed these data so far. The data set
contains all the necessary change burst metrics. In this paper,
we use the data set to evaluate predictive power of change
burst metrics on Eclipse. Table IV(b) list some representative
change burst metrics used in our experiment.
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Fig. 4: How Gap Size and Burst Size Determine Change Burst
from A Sequence of Changes

Uhttp://archive.eclipse.org/arch/
Zhttps://bugs.eclipse.org/bugs/

3https://scitools.com/
“https://github.com/kimherzig/change_burst_data.git



TABLE IV: SOME REPRESENTATIVE METRICS USED IN EXPERIMENTS

(a) FILE-LEVEL CODE METRICS

(b) CHANGE BURST METRICS

Understand Metrics

Code Metrics

Change Burst Metrics

Brief Description

SumCyclomatic WMC NumberOfChanges
MaxInheritanceTree DIT NumberOfConsecutiveChanges
PercentLackOfCohesion LCOM NumberOfChangeBursts
CountOutput FanOut TotalBurstSize
CountLineCode LOC MaximumChangeBurst
CountInput Fanln NumberOfChangesEarly
CounDeclMethodAll RFC NumberOfChangesLate
CountClassDerived NOC TimeFirstBurst
CountClassCoupled CBO TimeLastBurst
CountDeclClassMethod NOM TimeMaxBurst
CountDeclClassVariable NOA PeopleTotal
TotalPeopleInBurst
MaxPeoplelnBurst
ChurnTotal
TotalChurnInBurst
MaxChurnInBurst

number of builds in which the file has changed
number of consecutive for a given file

number of change bursts for a given file
number of changed builds in all change bursts
maximum number of builds in all change bursts
compute number of changes for early periods
compute number of changes for early periods
when the first burst occurred

when the last burst occurred

when the greatest burst occurred

number of people who ever committed a change
total number of people involved across all bursts
maximum number of people involved in a burst
total churn over the lifetime of a file

total churn in all change bursts

maximum churn across all bursts

C. Evaluation Measures

In the experiment, we employ three commonly used evalua-
tion measures to evaluate the performance of defect prediction
models, including precision, recall and F-measure. These mea-
sures can be defined by using A, B, C and D in Table V. Here,
A, B, C and D are the number of defective modules that are
predicted as defective, the number of defective modules that
are predicted as defect-free, the number of defect-free modules
that are predicted as defective, and the number of defect-free
modules that are predicted as defect-free, respectively.

The recall rate is defined as A/(A + B). It denotes the ratio of
the number of defective modules that are correctly classified
as defective to the total number of defective modules. The
precision evaluates the correct degree of prediction model and
is defined as A/(A + C). Obviously, a good prediction model
desires to achieve high value of recall rate and precision.
Howeyver, there exists a tradeoff between them. Therefore,
a comprehensive measure of recall rate and precision is
necessary. F-measure is the harmonic mean of mean of recall
rate and precision, which is defined as:

2 X recall x precision
F-measure = — (5)
recall 4+ precision

All the above evaluation measures range from O to 1.
Obviously, an ideal defect prediction model should hold high
values of recall rate and F-measure. In the experiment, we
evaluate the performances of all defect prediction models in
terms of recall, precision and F-measure values. It is noted that
we do not specially report results with respect to the precision
measure since it has been included in the comprehensive F-
measure.

TABLE V: CONFUSION MATRIX OF DEFECT PREDICTION
RESULTS

Predict as Defective  Predict as Defect-free

Defective Modules A B
Defective-free Modules C D

D. Result and Analysis

Table VI illustrates the performance of Naive Bayes, Lo-
gistic Regression, Random Forest, and extRF on change burst
metrics over all dataset. When different values of labeled data
sampling rate p are set, F-measures of the same prediction
approach on a dataset are different. The best performance
in terms of F-measure on each dataset is boldfaced. It can
be easily observed that, extRF performs significantly better
than Naive Bayes, Logistic Regression, and Random Forest
on Eclipse 2.0, Eclipse 3.0, and JDT.Core in terms of all the
five sampling rates. Besides, it is noted that Random Forest
performs best among all the three supervised learning methods.
With respect to SWT dataset, it takes on a new characteristic.
Naive Bayes achieves the best performance among all the
labeled data sampling rate. It may be caused by that the
defective modules in SWT are too few. The imbalance in data
distribution may have bad influence on accuracy of prediction
model.

Figure 5 further depicts the change trend of prediction
model performance. It can be easily observed that increasing
labeled data sampling rate p may only result in marginal
performance improvement for extRF. Taking Eclipse 3.0 as
an example, the value of F-measure has no significant change
when we increase sampling rate p from 2% to 10%. If we
further increase sampling rate to 50%, the value of F-measure



TABLE VI: F-MEASURES OF DIFFERENT CLASSIFIERS UsS-
ING CODE METRICS

Data Set i Classifier

NB LR RF extRF

2% | 0.432 | 0.535 | 0.508 | 0.562

5% 0.43 | 0.538 | 0.517 | 0.556

Eclipse 2.0 | 10% | 0426 | 0.542 | 0.523 | 0.573
25% | 0413 | 0.558 | 0.55 0.578

50% | 0.409 | 0.563 | 0.557 | 0.595

2% | 0.690 | 0.675 | 0.694 | 0.748

5% | 0.702 | 0.680 | 0.702 | 0.762

Eclipse 3.0 | 10% | 0.698 | 0.677 | 0.719 | 0.757
25% | 0.680 | 0.690 | 0.726 | 0.784

50% | 0.673 | 0.714 | 0.739 | 0.797

2% | 0.667 | 0.611 | 0.684 | 0.719

5% | 0.685 | 0.681 | 0.614 | 0.716

JDT.Core | 10% | 0.688 | 0.693 | 0.626 | 0.725
25% | 0.659 | 0.695 | 0.644 | 0.731

50% | 0.652 | 0.706 | 0.68 0.75

2% | 0.605 | 0.53 | 0.426 | 0.551

5% | 0.599 | 0.536 | 0.421 | 0.558

SWT 10% | 0.602 | 0.557 | 0.436 | 0.572
25% | 0.597 | 0.56 | 0.468 | 0.589

50% | 0.603 | 0.577 | 0.553 | 0.592

only increases slightly about 0.029. As for JDT.Core, F-
measure has no dramatically improvement when we increase
sampling rate p from 2% to 25%. If we further increase y to
50%, F-measure rises a little. Another interesting phenomenon
is that, when we increase labeled data samples rate on Naive
Bayes, the F-measure lowers down on Eclipse 2.0, Eclipse 3.0,
and SWT. For JDT.Core, performance of Naive Bayes has a
little improvement when labeled data sampling rate y increases
from 2% to 10%. But when we continue to increase u to 25%,
F-measure has a sharp decrease. What’s more, F-measure of
Logistic Regression keeps increasing when sampling rate p
rises from 2% to 50%. Especially for SWT data set, F-measure
grows like an upward parabolic curve.

Figure 6 is drawn by extracting out F-measures of extRF
at p = 2% and F-measures of supervised approaches at
1 = 50%. Tt is noted that even when labeled data sampling rate
is very low, extRF still obtains comparable prediction perfor-
mance to traditional supervised learning methods. Especially
for JDT.Core and Eclipse 3.0, the result of extRF is even better
in contrast with other three supervised learning methods.

To further analyze predictive power of static code metrics
and change burst metrics, we design comparative experiments
on Eclipse 3.0 data set. Results are shown in figure 7. All of
the four defect prediction approaches are analysed. Obviously
change burst model have higher prediction accuracy than that
of static code model. Especially for extRF approach, change
burst model improve the prediction accuracy to a large extent
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Fig. 5: F-measures of extRF and Compared Models at Differ-
ent Sampling Rate
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Fig. 6: F-measures of extRF at y = 2% and Compared Models
at ;1 = 50%

in comparison with static code model. Besides, if we combine
code metrics and change burst metrics, there is no significant
improvement. Thus, there is no need using such a large
composed metrics for defect prediction.

Figure 8 shows the box-plots for F-measures obtained
from 100 trials with sampling rate p = 2% using extRE
In descriptive statistics, a box-plot is a convenient way of
graphically depicting groups of numerical data through their
quartiles. It also has lines extending vertically from boxes that
indicates variability outside upper and lower quartiles. For all
the four data sets, the inter-quartiles are all narrow (less than
0.090). Especially for Eclipse 3.0 and JDT.Core, the inter-
quartile is 0.035 and 0.030 respectively. The ranges between
upper tails and lower tails of box-plots are all less than 0.195.
The box-plots demonstrate that results of all the 100 trials
on such experimental setting distribute centrally around the
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Fig. 7: F-measures of Code Metrics and Change Burst Mea-
sures at Different Sampling Rate on Eclipse 3.0
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Fig. 8: Box-plots of F-measures obtained from 100 Trials on
Change Burst Metrics with Sampling Rate 1 = 2% using
extRF

median value. That is to say, our result is confident.

In summary, our results confirm that the proposed approach
extRF can achieve better defect prediction performance in
situations when modules with defect content are too few.

E. Answers to Research Questions

RQ>: Can the semi-supervised learning approach with few
labeled data samples achieve comparable results to the su-
pervised learning approach with a larger set of labeled data
samples?

From tables and figures above, we can conclude that our
extRF approach is appropriate to be applied to the situation
where historical data is not sufficient in software defect
prediction. For training data set with partially labeled, extRF
can still achieve a high prediction accuracy, while traditional

supervised learning approaches fail to predict defects effec-
tively.

RQs: Are change burst metrics more efficient than static
code metrics for defect prediction?

From figure 7, it shows that change burst metrics have
much more predictive power than code metrics. Specifically,
a combination of our extRF approach with change burst
metrics could improve prediction accuracy to a large extent.
Figure 8 further demonstrates that our results are convincible
and confident.

F. Threats to Validity

Followings are several potential threats to the validity with
respect to the experiments:

1) Bias of Evaluation Measures: In our research we only
employ the widely used F-measure to report the performance
of defect prediction. Other measures, such as area under curve
(AUC) and g-measure (harmonic mean of pd and 1-pf) are not
used. They are also comprehensive measures.

2) Comparison Accuracy: We only conduct comparison
experiments with traditional supervised approach, but have
not implemented effective comparison experiments with other
existing semi-supervised approach. Some other researchers
have proposed several semi-supervised approaches to defect
prediction. For example, H. Lu et al. [14] propose a self-
training approach on NASA data set, and M. Li et al. [13]
propose an active semi-supervised learning method on Lucene,
XALAN, and Eclipse data set. Since the authors of these semi-
supervised methods do not provide the program codes, we can
not conduct effective comparison experiments with them.

IV. RELATED WORK
A. Semi-supervised Learning

In traditional supervised learning, all training data should
be labeled before learning, and classifiers are then trained on
these labeled data. When a portion of training data samples
are unlabeled, and effective way to combining labeled and
unlabeled data in learning is known as semi-supervised learn-
ing [23]-[25] , where an initial hypothesis is firstly learned
from the labeled data and then refined through the unlabeled
ones labeled by certain automatic labeling strategy.

There have been many semi-supervised approach adopted
to defect prediction. Khoshgoftaar et al. [26] utilize EM-
based semi-supervised learning algorithm [23] in this domain.
It estimates the parameters of a generative model and the
probability of unlabeled examples being in each class. Their
work shows that EM-based semi-supervised software quality
modeling provides better performance compared to a stan-
dard supervised learning approach using C4.5. N. Seliya and
T.M. Khoshgoftaar [27] propose a semi-supervised clustering
approach. It extends traditional unsupervised learning (clus-
tering) into semi-supervised context so that better partitions
(or grouping) is achieved with the use of unlabeled data. It
improves the performance compared to the corresponding un-
supervised learning, but does not perform as well as supervised
learning. Besides, it is not an entirely automated approach and



requires software engineering experts in the loop. Hence its not
likely that semi-supervised clustering is a good candidate for
practical applications.

Both semi-supervised approaches above follow an inductive
learning strategy [23], of which the model is built from training
data and then is used to predict on test data (remaining compo-
nents, new versions of similar projects). Different from above
methods, Huihua Li et al. [14] implement a tansductive [23]
semi-supervised learning approach, which predicts the labels
of unlabeled data, and then uses the data to supplement the
model. Results show that the approach perform significantly
better than one of the best performing supervised learning
algorithm - Random Forest - in situations when few modules
with known fault content are available. Ming Li et al. [13]
present a defect prediction approach which extends Random
Forest into semi-supervised learning setting. In their method,
random forest is trained using initially labeled modules. Each
random tree is then iteratively refined with the original labels
and the labels which are assigned to previously unlabeled
modules. When the stop criteria is reached, the majority voting
from the ensemble forms the prediction.

In this paper, we present a new transductive semi-supervised
approach to defect prediction. But since there exists difference
in the evaluation strategy, and the authors do not provide the
program codes, it is impractical to compare the results of our
approach with semi-supervised approaches mentioned above.
However, we can compare our results with the literature on
supervised learning, as in both cases only the predicted labels
for unlabeled modules form the basis of evaluation.

B. Change Information

Despite the significant effort spent in research and practice,
the relationship between software defects and the various soft-
ware artifacts are still unknown. Regarding predictor variables,
we can identify three different approaches: product-centric,
process-centric, and a combination of both.

The most studied approach is to relate software defects to
the product itself: measures of static or dynamic structure
of source code. Schroter et al. [28] investigate the usage
relationship between software components and software de-
fects, and find it effective for predicting the most defect-prone
components for the Eclipse project. Zimmermann et al. [29]
extract defects from bug database of the Eclipse project, and
additionally annotate such data with a vast amount of size
and complexity metrics extracted from source code. They find
a significant correlation between complexity metrics and pre-
and post-release defects. Moreover, they use logistic regression
models for predicting successfully defects at a package level.
Menzies et al. [2] propose the Naive Bayes learner and a
feature selection method based on information theory and
obtain very accurate results for defect prediction on the MDP
repository for NASA projects. They conclude that there exists
no best set of code metrics for defect prediction but such
set rather depends on the characteristics of single data sets,
feature selection methods, and machine learners. Nagappan et
al. [4] arrive at similar conclusion, and they suggest a general

methodology for selecting relevant complexity metrics for a
given data set and creating a defect prediction model using
such metrics.

The second branch in defect prediction research aims at
relating various process artifacts such as change history of
source files, changes in the team structure, testing effort,
or technology and other human factors to software defects.
Graves et al. [30] predict fault incidences using software
change history based on a weighted time stamp model using
the sum of contributions from all changes to a module,
where large and/or recent changes contribute the most to
fault potential. Moser et al. [6] use change metrics such as
the number of revisions or refactoring to predict defects in
Eclipse classes. They report that cost-sensitive classification
yields more than 75% of correctly classified files and a recall
of more than 80%. Hassan [31] measures the complexity of
the change process by assessing how much modifications are
scattered across space and time. The resulting entropy metrics
are evaluated to be better predictors than prior faults.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a semi-supervised approach extRF
to defect prediction. It extends Random Forest into a semi-
supervised ensemble learning, refining each random tree based
on self-training paradigm. A boosting process is introduced,
and the final prediction result is produced by a weighted
combination of random trees. The extRF approach makes
defect prediction available even when defective information
of historical data are not sufficient. Our experiments are
conducted on Eclipse data set. We focus the metrics on
two versions (Eclipse 2.0 and 3.0), and two components of
version 3.0 (JDT.Core and SWT). Experiment results show
that extRF trained with a small size of labeled dataset achieves
comparable accuracy to that of supervised approach trained
with a larger size of labeled dataset. When employing extRF
on change burst metrics, defect prediction achieves a best
performance with F-measure of 0.75.

In the future, we would like to employ more data set to
validate the generalization ability of our approach. We will
also evaluate effectiveness of our solution for semi-supervised
setting with other approaches.
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