
Learning to Discover Subsumptions between
Software Engineering Concepts in Wikipedia

Xiang Dong†, Kai Chen†, Jiangang Zhu†, Beijun Shen‡
School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, Shanghai, China
Email: †dongxiang@sjtu.edu.cn, †voyageckg@sjtu.edu.cn, †jszjgtws@sjtu.edu.cn, ‡bjshen@sjtu.edu.cn

Abstract—Wikipedia contains large-scale concepts and rich
semantic information. A number of knowledge base construction
projects such as WikiTaxonomy, DBpedia, and YAGO have
acquired data from Wikipedia. Despite the huge amount of
relations in Wikipedia, the semantic relations (i.e. subsumptions)
between domain concepts are rather sparse, especially in software
engineering (SE) area. Hence, it is difficult to derive a software
engineering knowledge base directly from Wikipedia. Meanwhile,
domain knowledge base has become indispensable to a growing
number of applications in software engineering. So the discov-
ery of missing semantic relations between software engineering
concepts in Wikipedia is essential. In this paper, we propose an
approach for automatically discovering the missing subsumption
relations between software engineering concepts. Specifically, we
extract the SE domain concepts from Wikipedia firstly. And
secondly, we design a machine learning based algorithm with
some novel features to calculate the semantic relevancy between
concepts. Thirdly, we offer and utilize a semi-supervised model to
incorporate the features, which discovers the SE subsumptions.
Experimental results show that our approach can effectively find
the missing subsumption relations between software engineering
concepts. Finally, we build a taxonomy which contains 193,593
concepts together with 357,662 subsumption relations. Compared
with the taxonomies which are extracted from general-purpose
knowledge bases such as WikiTaxonomy, YAGO and Schema.org,
our dataset has a larger scale in software engineering domain.

Index Terms—Subsumption Extraction, Software Engineering,
Wikipedia

I. INTRODUCTION

Wikipedia is the largest online encyclopedia in the world.
It contains more than 5,027,000 concepts, and its extensive
network of links, categories and infoboxes provide a variety
of explicitly defined semantics. Thus, some knowledge bases
use Wikipedia as the data source of relation extraction. For
example, Wikitaxonomy [1], DBpedia [2], and YAGO [3]
are the large-scale knowledge bases which are derived from
Wikipedia.

However, these general-purpose knowledge bases only con-
tain a small quantity of concepts and relations in software
engineering (SE) domain. There is no one owning more than
1,000 SE concepts or relations. For instance, the subsumption
between “Sandbox (computer security)1” and “Virtualization
software2” is a subsumption relation in software engineering,
and “Sandbox” is an important SE concept, but they can

‡ Corresponding Author
1https://en.wikipedia.org/wiki/Sandbox (computer security)
2https://en.wikipedia.org/wiki/Category:Virtualization software

not be found in existing knowledge bases. Especially, a lot
of relations between SE concepts are not discovered when
analyzing knowledge data from Wikipedia, however, they are
more important for SE researches and practices such as seman-
tic relatedness calculation [4] [5] [6], document correlation
analysis [7], and defect prediction.

In this paper, we propose an approach for automatically
discovering the SE domain subsumptions in Wikipedia, so that
the missing SE semantic subsumption can be gathered and
established. However, to complete the work, we would face
these challenges:
• Software engineering concepts are always composed of

domain-specific terms. While natural language processing
techniques like segmentation or pos tagging are the basis
of some Web-based approaches for taxonomy construc-
tion, directly applying these approaches to our scenario
will lead to poor results.

• Several structural information is contained in Wikipedia.
How to design an algorithm to incorporate this informa-
tion when detecting subsumptions between concepts is
another important topic.

• The invalid SE entities would increase the difficulty
of subsumptions prediction when taking the Wikipedia
structural information into consideration.

To solve the challenges above, we propose a machine
learning based approach for domain subsumption prediction.
Particularly, it leverages several features from different aspects
to measure the semantic relatedness between concepts. Thus,
the confidence of relation prediction would be increased.
The semi-supervised model has been proposed to process the
information. We split the whole machine learning process into
several iterations to extract and optimize the relations set. So
in this paper, our work and contributions mainly include:

A. Using wiki-based features for classifiers training: we
utilize the structure based features in Wikipedia, and combine
with the lexical, co-occurrence and distribution features to
calculate similarity of different concepts. It increases the
performance of subsumption extraction.

B. Automatic labeling and iterating: we define the
constraint-based rules to label the negative data, and adopt
subsumption patterns to extract the positive data. During
each iteration of the semi-supervision, several constraints are
defined to automatically optimize the relations set, and in this
way, we shrink the cycle of data handling.

Wikipedia

Feature
Extraction

SE Domain
Concepts

Data Labeling
Semi-supervised

Learning SE Taxonomy Activity

Data

StackOverflow
Domain

Tags

Wikipedia
Concepts

SE Concept
Extraction

Labeled
Training Data

Domain Relations

RDF Format

…

Lexical Feature

Distribution-based
Feature

Structure-based
Feature

Co-occurrence-
based Feature

Fig. 1: Our approach for extracting SE relations in Wikipedia

C. Extracting SE subsumptions and building taxonomy:
we discover and extract the SE subsumptions in Wikipedia,
and build the large-scale taxonomy in software engineering
domain. The experimental results show our taxonomy contains
the large-scale concepts and deep semantic hierarchies.

II. RELATED WORK

There consists amount of researches on relations extraction
in general area. Auer et al. presented the DBpedia system [2]
which generates RDF statements by extracting the attribute-
value pairs contained in infoboxes of Wikipedia (e.g. country
= [[the People’s Republic of China]] is a key-value pair in
ShangHai page). Suchanek et al. built the YAGO system
which refers to relation exploration [3]. The method of YAGO
construction is getting all the “is-a” hierarchy in WordNet
and then mapping into Wikipedia for corresponding instances.
Merging Wikipedia with WordNet makes YAGO contain over
200,000 classes and 400,000 subsumption relations. Weld et al.
in Kylin Ontology Generator (KOG) [8] built a subsumption
hierarchy by combining Wikipedia infoboxes with WordNet
using statistical-relational learning. WikiTaxonomy [1] used
the way of finding some special rules for subsumption in
Wikipedia category structures. For example, “Companies listed
on NASDAQ” is a category of “Microsoft” and it is the plural
format, so WikiTaxonomy refers the pair as a subsumption
relation. Furthermore, WikiTaxonomy uses inference method
to extract the relationship again based on the existing concepts,
and it totally obtains 105,000 concepts with the precision of
88%. Zhishime [9] is the trial for relations discovery based on
Chinese Wikipedia. In addition, Lin et al. [10] used Freebase
as the supplement of Wikipedia, finding the relations by
solving invalid entities in Wikipedia. Wu et al. presented a
special method to construct probase [11] system by assigning
the probabilities to each relationship. It extracts 2.7 million
concepts.

As for relations discovery in SE domain, Lextcal Views
[12] applied some natural language processing techniques to
automatically extract and organize concepts relationship from
software identifiers in a WordNet-like structure. But more
software programming terms would not be included in this
relation set because Lexical Views only use the software
identifiers as its input. Zhu et al. [13] extracted hypernym-
hyponym relations between tags in StackOverflow, and built
a taxonomy called Software.zhishi.schema. It obtains 38,205
concepts and 68,098 relations, which still has the rise of space
in scale.

III. APPROACH

A. Approach Overview

In order to discover the subsumption relations between
the software engineering concepts, a machine learning based
approach is proposed, as shown in Fig 1. It consists of four
key activities:

1) SE Concept Extraction: through the input of SE domain
tags in StackOverflow and Wikipedia concepts, we extract the
SE domain concepts as preparation of the relations discovery.

2) Feature Extraction: features are launched for machine
learning, and these are divided into four classes: Lexical
Features, Co-occurrence-based Features, Structure-based Fea-
tures and Distribution-based Features.

3) Data Labeling: it generates the labeled data for classi-
fiers. For negative data, we use constrains-based method for
training. And for positive data, Hearst [14] patterns are adopted
to get some subsumptions for positive data generation.

4) Semi-supervised Learning: the semi-supervised model
divides the whole learning process into several iterations. And
in each iteration, we review the trained results of the current
iteration and update high confidence data as the input of the
next.

Finally, it extracts 357,662 subsumptions in our relation set,
and based on the discovered subsumptions, we build the SE
domain taxonomy in RDF format. We deploy our taxonomy
on the website3. Following subsections will describe these
activities in detail.

B. Domain Extraction

The process of domain extraction can be illustrated as
following steps: first, we get the domain tags from StackOver-
flow, and it contains tens of thousands of items. Through the
word-embedding method and voting mechanism, we filter out
all the domain-irrelevant tags and remain the seed words which
are needed. Second, in order to get structural information from
Wikipedia, we dump the Wikipedia XML file4 and obtain
a large-scale set which contains 5,027,000+ concepts. Third,
based on the built concept repository, we extract the domain
concepts by using seed words derived from the StackOverflow.
As the result, we obtain the software engineering corpora with
193,593 concepts, which is for the next relations discovery
works.

3https://datahub.io/dataset/setaxonomy
4https://dumps.wikimedia.org/enwiki/20150901/

C. Feature Extraction

We adopt classification models to determine the correct
subsumption relation of each concept pair, for which several
effective features are designed. The purpose of feature en-
gineering is to quantitatively characterize the similarities or
relatedness between concepts. We divide all the features into
four classes: Basic Features, Co-occurrence-based Features,
Structure-based Features and Distribution-based Features.

1) Basic Features: this type of feature is aimed at capturing
the lexical similarity between two concepts, and it includes
two features: Head correlation calculation and Unbalanced
common substring.

Feature 1. Head correlation calculation: “head” means the
core word of concept. As for the analysis of head matching,
our approach is to build the semantic tree by using Stanford
Parser [15]. We judge and extract the core noun phrase from
the tree as the head of the term. After obtaining the sub-
sumption’s head, we adopt WUP [16], which is the similarity
calculation method based on WordNet structure, to measure
the relatedness. The WUP formula is as follows:

WUP (X, Y) =
2 · depth (LCA (Hx , Hy))

depth (Hx) + depth (Hy)
(1)

where Hx, Hy are the head of the concepts X and Y. LCA is
the lowest common ancestor of Hx and Hy in WordNet.

However, if there exists several heads in one concept, we
compute WUP for all, and then compare and select the maxi-
mum value. For example, as for concept “Software using the
Apache License” and “Android (operating system)”, we fetch
the heads “Software” and “Apache license” in first concept,
and fetch the “Android” in second one. Then, we calculate
the WUP values both between “Software” & “Android” and
“Apache license” & “Android”. The maximum of these two
values is served as the final feature figure of the relation
between “Software using the Apache license” and “Android
(operating system)”.

Feature 2. Unbalanced common substring: this feature is
designed to calculate the longest common substring of two
concepts, and we get the unbalanced lexical length character
into formulating construction:

f (X,Y) =
LCS |X,Y |
Len (X)

(2)

where Len(X) means the length of X, and LCS(X, Y) means
the longest common substring of X and Y. The increase of
value means X is more likely to be the hypernym of Y.

2) Co-occurrence-based Features: some relations hold the
subsumptions with low lexical similarities. Thus, we leverage
the co-occurrence information, which is in the content of the
concept, to measure the semantic relatedness between two
concepts.

For the co-occurrence-based features, we first define the
formula of co-occurrence calculation as follows:

r (a, b) =
log (max (|Ia| , |Ib|))− log (|Ia ∩ Ib|)

log (|W |)− log (min (|Ia| , |Ib|))
(3)

The formula represents Normalized Google Distance
(NGD), where a and b are the concepts of Wikipedia, and
Ia, Ib are the inner-link sets in article. Feature 3 and Feature
4 are defined based on this formula.

Feature 3. Abstract co-occurrence calculation: abstract
is a brief introduction, and contains the concept’s definition.
So abstract can effectively reveal the main characteristics of
current concept.

fabs (a, b) = r
(
Iabs−a , Iabs−b

)
(4)

We define the abstract co-occurrence calculation feature
fabs (a, b) above, and Iabs a, Iabs b are the link sets in abstract
structure of a and b.

Feature 4. Text co-occurrence calculation: text is the main
text body of concept, and it is responsible for comprehensively
describing the concept with enough related information. We
define the co-occurrence calculation in text:

ftxt (a, b) = r
(
Itxt−a , Itxt−b

)
(5)

where Itxt a, Itxt b are the link sets in main text body of
concepts.

Feature 5. Category co-occurrence calculation: the cate-
gory lists the concepts which current concept belonged to, so
some potential subsumptions are contained in the category.
In this feature, we calculate the co-occurrence in category
structure. Furthermore, if a is in the category of b or vice versa,
they maybe more likely a subsumption, so we add weight to
this situation based on NGD formula. The fcate(a, b) is as
follows:

log (max (|Ia| , |Ib|))− log (|Ia∩Ib|+ fbls (a, b))

log (|W |) − log (min (|Ia| , |Ib|))
(6)

In the fcate(a, b) above, fbls(a, b) represents the weight of
inclusion. We define fbls(a, b) in equation (7), and µ, ν>0:

fbls (a, b) =

µ , a ∈ Icat−b

ν , b ∈ Icat−a

0 , others

(7)

where Icat−a and Icat−b are category sets of a, b. Based on
the analysis of weight impact, we set µ = 5, ν = 5 in our
experiment.

3) Structure-based Features: The Co-occurrence-based
Features are only calculated for relevancy in the content, but
the analysis in Wikipedia structure is also important. Thus, we
launch the Structure-based Features.

Feature 6. Similarity calculation of guideline: guideline
is a Wikipedia structure, and it lists the chapters which would
be illustrated in the text body of page. For example, in page
“Binary search Tree”, the guideline includes chapters “Def-
inition”, “Operations” and “Examples of applications” etc.,
and the “Operations” also includes “Searching”, “Insertion”
and “Deletion”. These listed chapters are mapped to the
text body and described in detail. Thus, guideline reveals
the whole structure of the text, and it is also one of the

important structures. We use Jaccard to calculate the similarity
in guideline.

Jaccard
(
Igdl−a, Igdl−b

)
=

Igdl−a ∩ Igdl−b

Igdl−a ∪ Igdl−b
(8)

where Igdla , Igdlb are the chapter sets of guidelines.
Feature 7. Similarity calculation of infobox: infobox

is another structure provided by Wikipedia, and it lists the
attributes to present the information of concept. We take
Iinfo−a, Iinfo−b into formula (8) to calculate the Jaccard
value of infobox, and the Iinfo−a and Iinfo−b mean the
attribute sets of infoboxes.

4) Distribution-based Features: this feature is for mea-
suring the difference between two topic distributions of two
different concepts.

Feature 8. Divergence calculations: as for the subsump-
tions that have low similarity in content and structure, we
adopt KL-divergence [17] to do the further analysis. In the
process of KL-divergence, we use LDA [18] to build the
Wikipedia topic-based distribution, and calculate the proba-
bility distributions of the two concepts. Finally, we compute
the KL-divergence between the two distributions.

DKL (pwa || pwb) =

N∑
n=1

pwa (n) log
pwa (n)

pwb(n)
(9)

where pwa(n) and pwb(n) are the probability of n-th topic in
the topic distributions of a, b.

D. Data labeling

Subsumption detection is usually treated as a binary class
classification problem. And classification is a supervised learn-
ing, which requires labeled data for training. Thus, the gener-
ation activity should be taken into consideration for training
adequate and fine distribution labeled data.

As for the positive data, we use Hearst patterns in abstract
of each page to find some subsumptions as our positive data.
The following patterns are used in our approach:

NP1{,} “such as” NPList2
NP1 {,}“and other” NP2

NP1 {,}“including” NPList2
NP1 “is a” NP2

NP1 “is the” NP2 “of” NP3

Part of subsumptions are extracted by Hearst, and we will
select some subsumptions and calculate the feature values for
them, to label as the positive data.

As for the negative data, we first extract some relations
between concepts, and calculate the feature values. Through
feature-based constraints, we predict if these relations meet
the negative conditions. For example, about the undetermined
relation (X, Y), we proceed the judgment on following con-
straints:

1) WUP (X,Y) < M
2) Len(X) > Len(Y)
3) Jaccard info = 0

4) Jaccard gdl = 0

5) |KL(X,Y)−KL(Y,X)| < N

where WUP (X,Y) calculates the WUP value between X and
Y, Len(X) gets the length of X, and KL(X,Y) obtains the
KL-divergence between X and Y. In these constraints, M and
N are set as ascertained value to meet the requirement of our
engineering. If any constraint above is satisfied, relation (X,
Y) will be labeled as negative. In our experiment, M = 0.4 and
N = 0.003.

E. Semi-supervised learning

We design a semi-supervised learning algorithm to extract
SE relations, which splits the whole training process into
several iterations. In the first iteration, we import the labeled
training data and SE domain concepts. And in the following
iteration, the input is the optimized results processed by the
last iteration. We totally enforce 5 iterations and build a SE
domain relation set as outcome.

However, the data quality in previous iteration could make
a huge impact on the next iteration, therefore some incorrect
data if not discarded may spread along the progress of iteration
and cause more inaccuracy. In order to avoid this mistake, we
define some rules between two adjacent iterations to filter out
the incorrect relations. In this paper, we launch three useful
constraints as follows:

• Constraint 1: ring conflict constraint. Given the two
concepts a and b, if there exists a path from a to b,
the path from b to a is not allowed. This is because
the subsumed relation is asymmetric. For example, If we
find a subsumption “Sorting algorithms” → “Quicksort”,
and then find “Quicksort” → “Sorting algorithms”, the
relation “Quicksort” → “Sorting algorithms” should be
removed.

• Constraint 2: transitive redundancy constraint. Given
concepts a,b and c. If a subsumes b, and b subsumes
c, then a must subsume c due to the subsumption satisfy
transitivity. This subsumption is unneeded in our relation
set. For instance, the concept “word2vec” subsumed into
“deep learning” is unnecessary because “word2vec” is
subsumed by “deep learning” and “deep learning” is
subsumed by “machine learning”.

• Constraint 3: synonymous conflict constraint. if concept
a and concept b are synonymous, they must not be sub-
sumptive. Therefore, such relations like “Ordered binary
tree”→“Binary search tree”, or “Heap”→“Heap” would
be removed in this constraint.

These three constraints are very important for ensuring the
fine quality of the data output in each iteration, because con-
straint 1 and 2 contribute to avoiding pulling in the incorrect
instance, and constraint 3 helps cast off the redundancy. This
mechanism optimizes the result and guarantees our approach
to learn more relations with fine granularity.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Iter1 Iter2 Iter3 Iter4 Iter5

Accuracy(%)

Fig. 2: Accuracy tendency for each iteration

TABLE I: Result sets of three models

Models Relation numbers Accuracy
Decision Tree 333,659 77.3%
Naive Bayes 351,457 78.1%
SVM 357,662 79.7%

IV. EXPERIMENT

A. Experiment Setup

1) Data handling: some necessary data are processed in our
approach. During the data extraction in SE concept extraction
activity, we totally obtain 193,593 software engineering do-
main concepts. And in the data labeling activity, we finally
generate 4,181 labeled training data, which includes 2,018
positive data and 2,163 negative data, and these labeled data
are used for training the classifiers.

2) Accuracy evaluation: as for the accuracy evaluation in
our experiment, we mainly use manual judgment to finish this
work. For the classification results in each iteration, we invited
5 partners in our laboratory to join the accuracy calculation
work. We randomly select about 10,000 relations extracted by
the certain classifier in each iteration, and assigned approxi-
mately 2,000 relations to each member. We require them to
judge the exactness of these relations by labeling “Yes”, “No”
or “Uncertain” for each relation. After finishing each part of
works, we gather all the results and estimate the prediction
accuracy of classifiers.

3) Semi-supervised learning: for assuring the stability of
extraction in semi-supervised, we implement three models
for information processing, which are decision trees, naive
Bayes and SVM. These models extract relations and get three
different result sets, and we select the best one as our final
result and put it into taxonomy with the RDF format.

B. Result Analysis

1) Accuracy evaluation of semi-supervised learning: we do
the accuracy evaluation of semi-supervised learning in order
to check the effect of several iterations and the constraints

0

22.5

45

67.5

90

Precision Recall F1-score

LW WK LWK

Fig. 3: Comparison of different feature groups

mentioned in III(E). As for the used three classifiers, we
separately calculate the accuracy of each algorithm. And in
every iteration, we get the average accuracy of three models at
current iteration, as the accuracy value. In this way, we ensure
the stability of evaluation. The tendency chart of precision is
Fig 2.

2) Results analysis of three models: after the whole semi-
supervised process, the final results extracted by three models
are shown in Table I. We could find the results trained by
SVM is considered the best, and we use SVM results as our
final relationship set which contains 357,662 subsumptions
with 79.7% accuracy.

C. Feature contribution analysis

We design the experiment to analyze whether these features
are helpful for the relationship prediction. In the experiment,
all the features first are divided into three classes: Lexical
Features, Wiki-based Features(including Co-occurrence-based
Features and Structure-based Features), and KL-Divergence
Feature. Then, we combine these classes into three groups.
The first group consists of Lexical Features and Wiki-based
Features(donated as LW), and the second group includes Wiki-
based Features and KL-Divergence Feature(donated as WK),
for the third group, we use all the features(donated as LWK).
As for the three groups, we trained the three SVM classifiers
separately and get three different results. The precision, recall
and F1-scores is been calculated for the three result sets and
we make comparisons in Fig 3.

The result shows LWK performs best, the values of pre-
cision, recall and F1-score are higher than LW and WK,
which means all the features have an effect on subsumption
extraction. Compared with WK, the LW performs better. It
mainly because Lexical Features is adept at finding overt sub-
sumptions which contain semantics relations, and the Lexical
Features could predict the relation when Wiki-based Features
are symmetry. On the contrary, KL-Divergence Feature aims
at finding the crytic subsumptions, it could be small amount
and lower confidence compared with LW.

TABLE II: Comparison with other works

Ours
Software.

zhishi.schema

SE subset of

YAGO WikiTaxonomy Schema.org

Concept Number 193593 38205 898 711 10

Subsumption

Number
357662 68098 870 630 0

Maximun Depth 31 28 3 6 1

Minimum Depth 1 1 2 1 1

Average Depth 7.02 6.99 2.24 1.39 1.00

D. Taxonomy Comparison

Because of the absence of public software engineering
taxonomy, we first take the software engineering taxonomy
built by Zhu et al. [13] into consideration, the result set
is called Software.zhishi.schema. Some general knowledge
bases are also imported into our experiment, such as Yago
Taxonomy, WikiTaxonomy, and Schema.org. We compare the
SE domain subset of above works, and provide the indicators
such as concept number, subsumption number, maximum
depth, minimum depth and average depth for each collection
in order to illustrate the granularity and richness.

From the Table II, we can see in our taxonomy, the
maximum depth reaches 31 and the average depth is 7.02,
which contains the larger concept and subsumption numbers
than other works.

Data
structures

Arrays

Array data
structures

Binary
trees

Binary
search tree

Red-black
tree

Linked
lists

Trees

Search
trees

Unrolled
linked list

Random
binary tree

Fig. 4: A small fragment of our taxonomy

We capture a small fragment of our taxonomy tree as the
demonstration, and shown in Fig 4, some unnecessary nodes
are ignored. It reveals the granularity and hierarchy of our
result set in this figure. The complete taxonomy has been
deployed on our website.

V. CONCLUSION

In this paper, we propose an approach to discover the
subsumptions between SE concepts from Wikipedia. The ap-
proach collects domain tags in StackOverflow as seed words,
extracts concepts in Wikipedia, and uses machine learning
algorithms to extract subsumption relations. We launch multi-
dimension features to improve the training precision. As a

result, we build the taxonomy which contains 193,593 con-
cepts and 357,662 subsumption relations with the format of
RDF. The experimental results show the large-scale and high
accuracy of our dataset.

For the future work, we will try to use other datasets
to support the current work, because we find it still con-
tains increasing space of scale if the entity invalidations of
Wikipedia can be thoroughly solved. It requires implementing
the mapping mechanism of entities between Wikipedia with
other datasets.

VI. ACKNOWLEDGEMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242).

REFERENCES

[1] Simone Paolo Ponzetto, Michael Strube:WikiTaxonomy: A Large Scale
Knowledge Resource. ECAI 2008: 751-752.

[2] Soren Auer, Christian Bizer, Jens Lehmann, Georgi Kobilarov, Richard
Cyganiak, and Zachary Ives, DBpedia: A nucleus for a Web of open data,
in Proc. of ISWC 2007 + ASWC 2007, 722735, (2007).

[3] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard
Weikum. Yago2: a spatially and temporally enhanced knowledge base
from wikipedia. Artificial Intelligence, pages 163,(2012).

[4] Michael Strube, Simone Paolo Ponzetto: WikiRelate! Computing Seman-
tic Relatedness Using Wikipedia. AAAI 2006: 1419-1424.

[5] Budanitsky, A. & G.Hirst. Evaluating WordNet-based measures of se-
mantic distance. Computational Linguistics 2006, 32(1).

[6] Giriprasad Sridhara, Emily Hill, Lori Pollock, and K Vijay-Shanker.
Identifying word relations in software: A comparative study of semantic
similarity tools. In ICPC 2008, pages 123132. IEEE, 2008.

[7] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung.
Relink: recovering links between bugs and changes. In Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 1525. ACM, (2011).

[8] Fei Wu and Daniel Weld, Automatically refining the Wikipedia infobox
ontology, in Proc. of WWW-08, (2008).

[9] Xing Niu, Xinruo Sun, Haofen Wang, Shu Rong, Guilin Qi, Yong Yu:
Zhishi.me - Weaving Chinese Linking Open Data. International Semantic
Web Conference (2) 2011: 205-220

[10] Thomas Lin, Mausam, and Oren Etzioni. No noun phrase left behind:
Detecting and typing unlinkable entities. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 893-903, Jeju Island,
Korea, July.

[11] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD 2012, pages
481-492. ACM, 2012.

[12] J-R Falleri, Marianne Huchard, Mathieu Lafourcade, Clementine Nebut,
Violaine Prince, and Michel Dao. Automatic extraction of a wordnet-like
identifier network from software. In Program Comprehension (ICPC),
2010 IEEE 18th International Conference on, pages 413. IEEE, (2010).

[13] Jiangang Zhu, Beijun Shen, Xuyang Cai, Haofen Wang:Building
a Large-scale Software Programming Taxonomy from Stackoverflow.
SEKE 2015: 391-396

[14] Marti A Hearst. Automatic acquisition of hyponyms from large text cor-
pora. In Proceedings of the 14th conference on Computational linguistics-
Volume 2, pages 539-545,(1992).

[15] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing.
In Proceedings of the ACL, (2003).

[16] Wu Z, Palmer M. Verbs semantics and lexical selection. Proceedings of
the 32nd annual meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 1994: 133-138.

[17] Solomon Kullback. Information theory and statistics. Courier Corpora-
tion, (1997).

[18] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. the Journal
of machine Learning research, 2003(3): 993-1022.

