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Abstract—Knowledge base is becoming indispensable to soft-
ware engineering and knowledge engineering. However, the exist-
ing domain knowledge bases are always handcrafting constructed
and small-scale. In this paper, we propose a semi-supervised
approach to detect domain concepts and build a knowledge base
for software engineering from Wikipedia. First, the approach
selects domain relevant tags from Stackoverflow. Then, it matches
Wikipedia entities and expands the concept set through an
improved label propagation algorithm. A rule-based method
is designed to discover semantic relations including relate,
subclassOf and equal by analyzing the structure information
of Wikipedia. A relation derivation mechanism is provided to
optimize the relation set. We finally construct SEBase, a domain-
specific knowledge base of software engineering. Experimental
results show the high accuracy of the integrated concepts and
relations. Compared with other knowledge bases, SEBase has
the widest coverage of concepts and relations about software
engineering.

Index Terms—Knowledge Base; Software Engineering; Semi-
supervised; Domain Concept; Semantic Relation

I. INTRODUCTION

Knowledge base plays an important role in software engi-
neering and knowledge engineering. For example, in program
comprehension, knowledge bases are used to compute the
semantic similarities between words from the comments and
identifiers in software [1]. In software maintenance, knowledge
bases provide an effective way to measure the relatedness
between documents [2].

Research on general knowledge base has been quite mature.
Some famous achievements like DBpedia [3], Yago [4], Wik-
iTaxonomy [5], BabelNet [6] and Probase [7] are proposed
in recent years. Those knowledge bases have a large number
of concepts and relations while achieving high accuracy and
coverage. However, the knowledge in them is not specific
and not in-depth enough when we focus on some particular
domains like software engineering.

Building domain-specific knowledge base is a difficult task
requiring skills in logic and ontological analysis. Domain ex-
perts need to determine the scope of the domain concepts and
construct relations for them. However, handcraft construction
is time-consuming and small-scale. Although there has been a
considerable amount of prior research on automatic construc-
tion of software engineering knowledge base, a high-quality
knowledge base is still lacked because learning knowledge
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from any single data source cannot achieve desirable effect
and domain concepts are difficult to distinguish.

Knowledge learning can be encyclopedic-based or web-
based. For the encyclopedic-based approaches, researchers
mainly focus on Wikipedia for its abundant structural informa-
tion. Wikipedia is the most comprehensive and authoritative
knowledge source on the world, which has a total of 17 million
entries composed of title, redirect title, comment, text and other
information.
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Fig. 1: An example from Wikipedia

For web-based approaches, general knowledge bases learn
knowledge from kinds of web pages but domain knowledge
bases only consider domain relevant web pages. Recent year
researchers pay more attention on Stackoverflow. Stackover-
flow is one of the most famous QA websites about software
engineering and provides a tagging system for users to an-
notate questions freely. The tags of Stackoverflow are more
domain relevant.

Generally speaking, encyclopedic-based approaches can
achieve higher accuracy but worse coverage than web-based
approaches. We select Wikipedia as our main knowledge
source and select Stackoverflow as supporting source to obtain
the advantages of both. We detect Wikipedia entities which
have high relevance to Stackoverflow tags by matching and
expansion methods.

The problem is non-trivial and poses unique technical
challenges follow:
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Fig. 2: An example from Stackoverflow

1) Since most of the Stackoverflow tags are domain rele-
vant, they are provided by ordinary users freely. A large
number of low quality tags are existed. If the domain
relevance of tags cannot be ensured, the accuracy of
final results cannot achieve our expectancy. Therefore,
how to ensure the quality of tags is problematical.

2) Traditional matching methods are difficult to interlink
Stackoverflow tags and Wikipedia entities. For example,
tag “java” and entity “java man” are seem related but it
is ridiculous to treat the latter as a software engineering
concept.

3) Since a part of domain concepts can be detected by
matching method, more concepts cannot be discovered
because tags are not comprehensive enough. For exam-
ple, “Ocaml” is a programming language but no tag can
match it. How to detect domain concepts which have
low relevance to tags is also a challenging problem.

In order to solve challenges above, we divide the problem
into two sub problems - domain concepts detection and
semantic relations discovery. For the first sub problem, we
select domain relevant tags from Stackoverflow, and make
head matching with Wikipedia entities to obtain a part of
domain concepts. Then, we treat Wikipedia as a large knowl-
edge network, and propose a semi-supervised method based
on an improved label propagation algorithm to acquire domain
network of software engineering. For the second problem, we
discover three types of semantic relations including relate,
subclassOf and equal by analyzing the structure informa-
tion of Wikipedia. We also propose a relation deriving method
to delete mistaken or redundant relations.

To the best of our knowledge, our work is the first to
build software engineering knowledge base by interlinking
Stackoverflow tags and Wikipedia entities. Our contributions
mainly include:
• We systematically explore the knowledge provided by

Wikipedia and Stackoverflow, and leverage a series of
methods including tag selection, head matching and label
propagation to detect domain concepts.

• We analyze the structure information of Wikipedia, and
discover three types of semantic relations from Wikipedi-
a. A derivation mechanism is designed to optimize the

relation set.
• We carry out a comprehensive set of experiments to

evaluate our approach. The results show our approach
can outperform the several existing knowledge bases in
terms of accuracy and coverage significantly. Thus, we
publish SEBase1 on the Internet which will benefit many
applications in software engineering.

II. RELATED WORK

A. Knowledge Base Construction

Knowledge base and taxonomy construction has aroused
extensive attentions in research community. The construction
methods can be encyclopedic-based or Web-based. For the
encyclopedic-based methods, researchers mainly focus on
extracting concept hierarchies from Wikipedia. DBpedia [3]
is a crowd-sourced community effort to extract structured
information from Wikipedia. WikiTaxonomy [5] builds a tax-
onomy from the Wikipedia category system. Yago [4] and
BabelNet [6] both interlink Wikipedia entities to WordNet [8]
synsets.

Regarding Web-based methods, it can be free text based or
social tag based. For the free text based methods, Probase [7]
builds the largest taxonomy which contains over 2.7 mil-
lion classes from 1.7 billion Web pages. WiseNet [9] builds
a semantic network by extracting relation instances from
Wikipedia page bodies and ontologies. For social tag based
methods, Xiance Si et al. [10] estimated the conditional prob-
ability between tags and designed a greedy algorithm to elim-
inate the redundant relations. Jie Tang et al. [11] captured the
hierarchical semantic structure of tags by a learning approach.
Zhishi.schema [12] is the first achievement to learn knowledge
from tags and categories in popular Chinese websites.

B. Software Engineering Knowledge Base

Software engineering knowledge base is a type of domain
knowledge base. However, there are only a limited number of
researches which are related to software engineering knowl-
edge base. Kavi Mahesh et al. [13] proposed LOaD-IT, a
concept network to help software developers read technical
documents faster. Mr.Izzeddin A.o. el at. [14] constructed
a programming language ontology. Lexical Views [15] us-
es some natural language processing techniques to extract
concepts from software terminology, and organize them into
a tree structure like WordNet. Software.zhishi.schema [16]
uses tags of Stackoverflow build a software engineering
knowledge base. We broaden the scale of concepts based on
Software.zhishi.schema by interlinking Stackoverflow tags to
Wikipedia entities.

C. Set Expansion

The most challenge to build software engineering knowl-
edge base is domain concepts detection. Set expansion is the
most effective method to discover concepts. It can be text-
based and graph-based. For the text-based approaches, Richard

1https://datahub.io/dataset/sebase
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Fig. 3: Our approach to build SEBase

C. Wang et al. [17] proposed a language-independent set
expansion method based on pattern selection. KnowItAll [18]
is famous for its high effect. It extracts information from the
web and induce the rule templates. Regarding graph-based
approaches, label propagation algorithm(LPA) is widely used.
LPA is a semi-supervised method. Jierui Xie et al. [19] [20] fo-
cused on community detection using a neighborhood strength
driven LPA. Liu et al. [21] designed an improved LPA in large-
scale bipartite networks to detect community. In this paper,
we propose a Wikipedia-based LPA called WLPA to detect
community of software engineering.

III. APPROACH

In this section, we describe our proposed approach in detail.

A. Approach Overview

We propose a semi-supervised approach to build a knowl-
edge base for software engineering from Wikipedia. As show
in Figure 3, it consists of five main components, namely
Tag Selection, Head Matching, Label Propagation, Relation
Discovery and Post Processing. Tag Selection tries to select
software engineering tags from Stackoverflow. Head Match-
ing matches tags with Wikipedia entities to obtain a part
of domain concepts. Label Propagation leads to discover a
domain network including concepts and relations. Relation
Discovery is to extract three types of relations from the domain
network. Post Processing is to delete mistaken or redundant
relations by three type of relation deductions. Finally we build
a domain knowledge base originated from Stackoverflow tags
and composed of Wikipedia concepts and relations.

B. Tag Selection

Since tags in Stackoverflow are provided by normal users
freely, the domain relevance of tags is unreliable. For example,
“music” and “jave” are in the tag set, but the former is domain
irrelevant and the latter is a wrong writing of “java”. A selec-
tion is necessary to delete domain irrelevant and mistaken tags.
The standards of selection are based on two phenomenons. The
first is that the tags from questions with high vote score and
favorite number are more domain relevant. This phenomenon
can be interpreted as that the users always pay more attention
on software engineering related questions. Another truth is
that the tags with high frequency are more reliable than tags
with low frequency. We select tags that have high occurrence

frequency and are extracted from questions with high attention.
The selection method is simple but effective. The details of
the selection are as follows:

1) We select questions which have the top 10% vote score
and the top 10% favorite number.

2) We select tags from those questions and make a ranking
by occurrence frequency .

3) We select the top 30% tags.

C. Head Matching
The purpose of head matching is to detect Wikipedia entity

which has high relevance with the selected tags. The details
of the matching are as follows:

1) We first unify the format of tags and entities. All letters
are transformed into lowercase. A part of tags and
entities are split by “-” and the others are split by
spaces. We replace underscores and hyphens by spaces.
Many tags and entities contain a version number, and
we delete it directly because it does not affect semantic
meaning. For our running example, “machine-learning”
is transformed to “machine learning”, “Visual Studio
2012” is transformed into “visual studio”.

2) For each tag and entity, we select its headword as
matching standard. We use a simple but effective rule to
extract headword: If the tag or entity is a single word,
headword is itself. Otherwise, if it contains prepositions
such as “of”,“in” or “for”, then headword is the previous
word of the preposition. If not then headword is the last
word. For example, we extract “sort” from “heap sort”
and “architecture” from “logic architecture of hadoop”.
It is worth mentioning that some Wikipedia entities
such as “java (programming language)” have label. We
extract headword from its label. In addition, we use
StandfordNLP2 tool to stem the headword. For some
running examples, “programming” is transformed into
“program”, “algorithms” is transformed into “algorith-
m”.

3) For each Wikipedia entity, we check if there are one or
more tags with same headword. Once hit, we confirm
the entity is a software engineering concept. In order to
compare faster, we establish inverse index on headword.
We compute digital fingerprint of headword as index.

2http://nlp.stanford.edu/



D. Label Propagation

The head matching only captures the semantic relation
between software engineering concepts in an explicit way,
however it cannot detect the implicit relations between them.
For example, “Ocaml” is a programming language but no tag
has sematic relation with it. So “Ocaml” cannot be detected
by head matching but it exactly is a domain concept. In order
to solve this problem, we propose a set expansion method
by leveraging the structure information to detect the implicit
relations between domain concepts.

Wikipedia can be regarded as a large knowledge network.
Some concept pairs are connected by links. The linked entity is
related to current entity. Correlation degree is proportional to
the time of links. We extract links3 from Wikipedia page and
use these links to quantitatively characterize the similarities
or relatedness between entities. There are more links between
concepts which in the same domain than in different domains.
We run an improved label propagation algorithm (LPA) called
WLPA to expand the domain concepts set. The details of the
algorithm are as Table I.

TABLE I: DESCRIPTION OF WLPA ALGORITHM

Algorithm: WLPA
Input: seed concepts set S, Wikipedia entities set W

Wikipedia link set L
Procedure:
1: construct a knowledge network G(V,E)

G is directed graph, V = W

edge(u, v) = ∞ if node u and v connect by redirect title
edge(u, v) = o if node u and v connect by category
edge(u, v) = l(u, v) if node u and node v connect by link
where l(u, v) equals to the number of link from node u to v
∞ � o � max{l(u, v)}

2: initialize nodes with unique labels
∀n∈S, cn = lY
∀n∈V \S, cn = lN

3: update each node’s label
∀n∈V \S cn = lY
if ∃ u, cu = lY , e(u, n) = ∞ or e(n, u) = ∞ or∑

e(u, n)>
∑

e(v, n) or
∑

e(n, u)>
∑

e(n, v)

where cu = lY , cv = lN , e != ∞
cn = lN else.

4: if not converged, continue to 3
5: Return final label set {cn}

Output: labeled network G

The edges in knowledge network G can be divided into
three types that redirect title weighs ∞, category weighs o
and normal link weighs the number of links. At the initializing
step, we set nodes of seed concepts with stationary label
lY . Those nodes would never change its label because they
are detected by head matching and we treat them as “seed”.
At the propagation step, we derive the label of nodes by
comparing the sum of weight between lY neighbors and
lN neighbors, where lY and lN indicate that the node is a

3We also treat category and redirect title as types of link.

domain concept or not. The weight of in-edges and out-edges
are respectively computed. A propagation running example is
shown in Figure 4.
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Fig. 4: A running example of label propagation

The difference between WLPA and original LPA [22] main-
ly includes:
• WLPA works on directed graph but LPA works on

undirected graph.
• Edges of WLPA graph have weight while edges of LPA

graph do not.
• WLPA has a part of nodes with stationary label.
All of the above changes improve WLPA more befitting

for Wikipedia knowledge network. Finally, WLPA generates a
domain network composed of software engineering concepts.

E. Relation Discovery

In this subsection, we discover semantic relations from
domain network. Three type of relations including relate,
subclassOf and equal are extracted. The edges of do-
main network are composed of Wikepedia structure relations
including link, category and redirect title. They are manually
constructed by Wikipedia entity contributors. We detect those
high accuracy relations to SEBase’s relation sets. The conver-
sion rules are as follows:

TABLE II: STRUCTURE BASED CONVERSION RULES

Situation Relation

A is B’s “Redirect Title” A equal B,B equal A

A is in B’s “Category” set B subclassOf A

In addition, We use Normalized Google Distance [23] to
calculate the degree of correlation between two concepts
and construct relate relation. Specifically, the Normalized
Google Distance (NGD) between two concepts A and B is:

NGD(A,B) =
max{logf(A), logf(B)} − logf(A,B)

logN −min{logf(A), logf(B)}
(1)



where N is the total number of edges; f(A) and f(B) are
the number of out-edge of concepts A and B, respectively;
and f(A, B) is the number of nodes that both A and B out-
connected. In order to control the number of this kind of
relations, we select the most 5 relevant concepts for a concept.

F. Post Processing

We provide a derivation mechanism to delete mistaken
or redundant relations. The relation deduction rules are as
Table III, where A=B means that there is an equal relation
between A and B, A'B means that there is a relate relation
from A to B, A→B means that there is a subclassOf
relation from A to B.

TABLE III: DERIVATION RULES

Situation Type Operation

A→B,B→C,A→C Transitive Redundancy Delete (A→C)

A→B,B→A Cycle Conflict Delete (B→A)

A=B,A'B Synonym Conflict Delete (A'B)

A=B,A→B Synonym Conflict Delete (A→B)

IV. EVALUATION

In this section, we show the experimental results of our
proposed approach. We mainly evaluate the accuracy and
coverage of concepts and relations in SEBase.

A. Tag Quality Evaluation

We first evaluate the quality of Stackoverflow tags. The
accuracy evaluation has to be done by persons manually
because of semantic comprehension required. However, due
to the large number of concepts and relations, it is impossible
to evaluate all of them by hand. Therefore, we design a
random sampling strategy and a labeling process. We manually
annotate some targets of sampled concepts or relations. The
accuracy assessment on the sampled subset can further be
used to approximate the correctness of the whole set. Three
students from our laboratory are invited to participate in the
labeling process. We provide them three choices namely agree,
disagree and unknown to label each sample. Then we can
compute the average accuracy.

We generate four tag sets for comparison. They are original
set, question selected set (QS), frequency selected set (FS),
question and frequency selected set (QS+FS). We randomly
extract 500 tags from four tag set as samples. Students annotate
each tag independently. Then, we select 1,000 high correlative
tags from original set to compute the coverage of four tag set.
Because the tags are treated as seed, we consider the precision
is more important than the recall. F0.5 score is used to compare
comprehensive quality of four sets. The results are evaluated
in terms of precision, recall and F0.5, as shown in Figure 5.

Where we can confirm the necessity of Tag Selection. After
question selection and frequency selection, the F0.5 score
achieves 92.82%.
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Fig. 5: Tag quality evaluation

B. Seed Concepts Quality Evaluation

This experiment is to evaluate the performance of Head
Matching. We generate three matching results for comparison.
They are original result, head matching result and stemmed
result. Original result is generated by matching tags and en-
tities directly. Head matching result is generated by matching
headwords. Stemmed result is generated by using stemmed
headwords. The sampling is similar with tag quality evalua-
tion. The results are evaluated in terms of precision, recall and
F1-score, as illustrated in Figure 6.
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Fig. 6: Seed concepts quality evaluation
The evaluation shows the necessity of Head Matching. The

precision of directly matching is less than 60% despite the
recall is higher. Head matching improves precision to 82.4%.
The stemming operation balances precision and recall, and
therefore the F1-score achieves 77.42%.

C. Final Results Evaluation

Next we evaluate the final concept and relation results.
The sampling of concepts is similar with above evaluation.
For relations, we randomly extract 500 equal, 500 relate
and 500 subclassOf relations as samples. Students label
each relation independently. Then, we select same numbers
of correct relations from Wikipedia to compute the coverage.
The evaluation results are as Figure 7.

For concepts, our approach achieves precision of 76.7%, and
recall of 92.4%. For relations, our approach achieves expected
precision but unsatisfactory recall. This is because we mainly
focus on domain concept detection and discover relation from
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Fig. 7: Final results evaluation

Wikipedia structure. However, only 24% of Wikipedia entities
have category and 43% of entities have a redirect title.

D. Comparison with Other Datasets

Since there are no published famous software engineering
knowledge bases, we compare SEBase with the subsets about
software engineering extracted from other well-known general
taxonomies namely Yago and WikiTaxonomy. We also com-
pare SEBase with our previous work, Software.zhishi.schema
(SZS), which is constructed from Stackoverflow. The compar-
ison results are as Table IV.

TABLE IV: COMPARISON WITH OTHER TAXONOMIES

SEBase SZS Yago WikiTaxonomy

Concept 193,593 38,205 898 711

SubclassOf 77,204 68,098 870 630

Equal 83,244 0 29 27

Relate 514,696 0 0 0

As for the relation number, SEBase is much larger than
any other datasets. However, 76.2% relations of SEBase are
relate and subsumption relations are relatively too few.
Regarding to the granularity and richness of concepts, SEBase
is more fine-grained than other existing datasets.

V. CONCLUSION AND FUTURE WORK

In this paper, we build SEBase, a large-scale knowledge
base of software engineering which contains 193,593 concepts
and 675,144 relations. Our approach interlinks Stackoverflow
tags and Wikipedia entities, and uses a semi-supervised WLPA
to learn knowledge from Wikipedia. The experiments show the
high quality of concepts and relations in SEBase.

As for future work, we plan to improve SEBase from three
aspects. We will try to extract more subsumption based on
classifier. On the other hand, we will study on deep learning
technology to obtain purer tags. Moreover, it is would be
interesting to construct a more effective matching method by
keyword extraction and topic model.
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