
A Reinforcement Learning Solution to Cold-Start
Problem in Software Crowdsourcing

Recommendations
Runtao Qiao1, Shuhan Yan1, Beijun Shen1,∗

1. School of Software, Shanghai Jiao Tong University, China
*corresponding author

{qiaoruntao, yansh0625, bjshen}@sjtu.edu.cn

Abstract—Recommendation is one key functionality of soft-
ware crowdsourcing platforms, which is responsible for rec-
ommending developers appropriate software projects, or vice
versa. Meanwhile, software crowdsourcing recommendation in
practice usually faces a cold-start problem: a platform has not
yet gathered sufficient information, and thus its recommendations
can be imprecise or unbalanced.

To tackle this problem, this paper introduces reinforcement
learning into crowdsourcing recommendations, and presents
ClusterUCBscRec, a novel project recommending approach to
learn user feedbacks actively. ClusterUCBscRec adopts the “ex-
plore & exploit” strategy to improve the recommending perfor-
mance continuously, and therefore goes quickly through the cold-
start stage. Besides the project models, developer models built
from multiple aspects, including developer profile, preferences
and skills are introduced into recommendation. Developers and
projects are clustered to speed up training and recommending
processes to further improve the performance.

We have evaluated ClusterUCBscRec on Jointforce. Experi-
mental results show that the novel approach significantly im-
proves the performance of crowdsourcing recommendations and
can solve the cold-start problem effectively, compared with
COFIBA and BiUCB.

Index Terms—Interactive learning; reinforcement learning;
software crowdsourcing recommendation; cold start problem

I. INTRODUCTION

Software crowdsourcing [1] has become a new paradigm of
software development. It has attracted attentions from both
industry and academia. Software crowdsourcing platforms
such as JointForce1 announce a 36.3%2 growth in profit. As
the number of projects increases in crowdsourcing platforms,
recommendation systems are needed to help developers find
suitable projects quickly.

However, developing a recommender system for a software
crowdsourcing platform is challenging. A major challenge is
how to recommend projects to cold-start developers (i.e., new
developers) who has insufficient history interaction records.

Even worse, projects in software crowdsourcing platforms
usually have short lifetime period. They are insufficient in
their data accumulations. Not much preference-related data are
collected when the project is available. Skill-related data are
much less. This makes the developer cold-start problem severe.

1https://www.jfh.com/
2http://finance.sina.com.cn/stock/hkstock/ggscyd/2018-03-27/doc-

ifysqfnh2380660.shtml

Most of the existing cold-start solutions follow two strate-
gies, however both of them do not work well for software
crowdsourcing platforms.

1) Gathering user information during user registration. Dur-
ing registration, users will provide much information such as
preference, skills and education information. The correctness
of these information is hard to verify, thus these information
are not trusted. If users provide their accounts in other plat-
forms, data in that platform can be transferred to relieve cold-
start problem. Alan V. Prando has proposed a recommender
system that recommends items by analyzing data from social
network instead of depending on user interacting data [2].
However, user data from other platforms are usually hard to
collect, and most of these platforms lack user skill information.

2) Using active/reinforcement learning to learn user prefer-
ence from his feedbacks. By introducing active learning [3] or
reinforcement learning, we can infer unknown user preference
from developer interactions. LinUCB [4], COFIBA [5] and
BiUCB [6] are three algorithms utilizing reinforcement learn-
ing. Sungwoon Choi also proposed a reinforcement learning
based recommender system using Biclustering technique [7].
All these algorithms claim to solve cold-start problem quite
well. However, they only focus on reinforcement learning of
user preference, not on user skills, which is a key factor in
our recommender system.

To address the cold-start problem in software crowd-
sourcing recommendations, we propose ClusterUCBscRec—-a
novel project recommending algorithm based on reinforcement
learning and clustering technology. ClusterUCBscRec adopts
the “explore & exploit”strategy to improve the recommending
precision continuously. Because the development techniques
are naturally grouped, developers and projects are clustered in
ClusterUCBscRec. Besides, cluster merging logic is proposed
to improve previous works on clustering-based recommenda-
tion. ClusterUCBscRec is integrated into JointForce which is
one of the biggest IT crowdsourcing platform in China. We
evaluated ClusterUCBscRec on a real data set from JointForce.
A series of online and offline experiments are carried out to
evaluate its performance.

The main contributions on this work are followings:
1) We propose a novel reinforcement learning based rec-

ommendation algorithm - ClusterUCBscRec for soft-

ware crowdsourcing platform. It utilizes many tech-
niques such as reinforcement learning, clustering, posi-
tive and negative interaction, so that it requires less user-
item interaction during the user cold-start process. This
makes it suitable to use in platforms that lack sufficient
data for the recommender system.

2) We build developer models and project models in soft-
ware crowdsourcing platform. Both models are modeled
by mining user online behaviors.

3) Both offline and online experiments are performed
to evaluate ClusterUCBscRec by comparison with
COFIBA and BiUCB, on the real dataset from Joint-
Force. To the best of our knowledge, this is the first time
that a reinforcement learning based recommender system
is practically used in software crowdsourcing scenario.
Experimental results show that ClusterUCBscRec well
solves the cold-start problem.

II. RELATED WORK

Our work is mainly related to recommender system, cold-
start problem and reinforcement learning.

A. Recommender System

With the development of crowdsourcing, researches on
crowdsourcing recommender system are emerging. Man-Ching
Yuen proposed a recommendation algorithm utilizing users
history records [8]. This algorithm presents user ability by
the number of his completed tasks, participated tasks and the
preference by browsing and favoring. Mejdl Safran proposed
a recommendation algorithm named TOP-K-T [9]. TOP-K-T
categorizes tasks by finding the category which is most similar
with target user. Zhu extracted skill and location features from
project textual descriptions, and adopted learning to rank tech-
nology to perform software developer recommendation [10].
Miao employed content-based recommendation techniques to
automatically match tasks and developers [11]. The approach
learns particular interests from registration history and mines
winner history to favour appropriate developers.

However, these algorithms [8] [9] are not designed to work
in a general crowdsourcing platform and not suitable for
recommendation of complex software development projects.
As for the software crowdsourcing recommending, all of these
works [10] [11] neither model developer skills, nor address the
cold start problem.

B. Cold-start Problem

Cold-start problem [12] involves how to recommend suit-
able items without large amount of user data. Cold-start
problem can be categorized into three categories:

1) User cold-start problem, when performing personal rec-
ommendation for new users.

2) Item cold-start problem, when recommending new items
to most favored users.

3) System cold-start problem, when recommending on a
newly deployed platform which has little data.

Fig. 1. An overview of our approach

Solving cold-start problem helps to provide a better user
experience. Traditional solutions of cold-start problem include:

1) Utilizing user registration information or information
gathered during new user guidance [12], [13].

2) Transferring user data from third-party sources [14].
3) Recommending popular items [14].
4) Reinforcement learning or active learning [4].
Solution 1 and 2 may make user experience worse because

they ask for too much information. Solution 3 can’t provide
personalized recommendation. Solution 4 is the best one for
software crowdsourcing platform, which can self-learn from
user feedback and also support diverse recommendation.

C. Reinforcement Learning Based Recommender System

Reinforcement learning based recommendation can be typ-
ically modeled as a multi-arm bandit (MAB) problem [4].

It requires the algorithm to take a “explore & ex-
ploit”strategy to find a better arm to reach a maximum total
reward. Some well-known solutions to the MAB problem
are Epsilon-greedy strategy [15], Bayesian Bandits [16], Lin-
UCB [4] and their variants.

From the reports of Stack Overflow 3 and CSDN4, many
developers have similar preferences for techniques. In this
way, we further introduce clustering-based techniques into
our algorithm. COFIBA [5] is one of the recommendation
algorithm which utilizes the clustering technique. We use it
as the base of our algorithm.

III. APPROACH OVERVIEW

A. Components of ClusterUCBscRec

Figure 1 shows the overview of ClusterUCBscRec. It con-
sists of the following components.

1) Resourcing modeling. Firstly the developer and project
profiles are modeled by analyzing their basic informa-
tion and mining user online behavior logs. The details
of modeling are described in Section IV.

3https://insights.stackoverflow.com/survey/2018/
4http://data.csdn.net/view/9.html

2) Project filtering. To speed up the recommending process,
we filters out the projects that do not meet project basic
requirements, such as location and salary, before project
recommendation.

3) ClusterUCBscRec recommending. Considering the spe-
cific situation in software crowdsourcing, project cluster
and developer cluster are set up, then several exploit
and explore strategies are employed to enhance the
performance.

4) User feedbacks and behaviors. When users (both de-
velopers and project sponsers) interact with projects,
their online feedbacks and behaviors are recorded and
sent back to the recommendater system for continuous
mining and learning.

5) ClusterUCBscRec learning. It includes learning of de-
veloper project preferences and learning of their devel-
opment skill levels, through analyzing and mining of
user feedbacks and behaviors. It is an active, continuous
learning process. The learning results are used to update
developer models and project models periodically, and
make them more and more accurate and comprehensive.
The detail is described in Subsection V.B.

The detail of recommendation and learning will be ex-
plained in Section V.

B. Recommendation Example

We give a brief example to illustrate how ClusterUCBscRec
recommendation and learning works.

Suppose there are several types of projects in software
crowdsourcing platform, including Java Development, Web
Development, Hardware Maintenance, and etc. Following is
a typical recommending scenario:

1) A new developer, named John, registered in the platform
just one hour ago, so we have no information about his
preferences and skills.

2) At the first recommendation, ClusterUCBscRec algorithm
recommended three of projects randomly to explore his pref-
erence, one for each project type. This is an exploring process.

3) John clicked the recommended web development project,
and thus ClusterUCBscRec learned that John is likely to
be interested in “Web” and “Development”, and updated his
model. If he didn’t like any of them, ClusterUCBscRec will
keep recommending projects whenever possible until John
finally interacts with one of the projects. This is an exploiting
process.

4) At the second recommendation, ClusterUCBscRec not
only recommended available web development projects to
John, but also continuously explored his more preferences by
recommending other types of projects.

6) After three recommendations, ClusterUCBscRec found
that John always ignored “Hardware Maintenance” projects.
We call this kind of interaction as negative interaction. So
ClusterUCBscRec learned John is not likely to be interested
in “Hardware” and “Maintenance”.

7) At the fourth recommendation, John enrolled in a “Web
Development” project and his enrollment was accepted by

the project sponsor. This emitted a “enroll in” succeeded
event to ClusterUCBscRec. ClusterUCBscRec learned that
John has the potential skills for “Web Developement” projects.
This made an influence on the recommendation process (the
M2 for some projects will change). ClusterUCBscRec gave
high priority to projects related to “Web” and “Development”
during recommendation.

8) John successfully finished the project using Java and SSH
framework, and the project passed the acceptance testing by
the project sponsor. Thus, ClusterUCBscRec learned that John
has the good skills for Java and SSH framework, and updated
his skill model.

IV. RESOURCE MODELING

In this section, we will describe how to build these two
resource models.

A. Project Modeling

In ClusterUCBscRec, software crowdsourcing projects are
modeled in three aspects:

1) Basic info, such as project Id, project category (Web
development, APP development...), on-site, type of de-
velopers (individual, group or enterprise), estimated
completion time, budget, published time. These basic
requirements must be meet to sign up this project.

2) Skill Requirements, including tech direction, skill re-
quirements and project domain. These requirements are
on the programming languages, development frame-
works, deployed platforms, etc.

3) Keywords, are extracted from the project textural de-
scriptions by a TF-IDF algorithm.

We generate a word vector for each project as feature
vector with these data. The word vector is consisted of the
words in Developer/Project model. After that, we execute the
dimensionality reduction by PCA to obtain a project feature
vector.

B. Developer Modeling

A developer model is used for preserving developers pref-
erence and skill information for recommending projects. The
developer model is composed of the following three aspects.

1) Basic info, such as type, age, salary, location, education
level, ticket available, errand available, gender, and etc.
They are used for filtering projects.

2) Skill levels, define developer skills on programming lan-
guages, frameworks, platforms, domain and project type.
They are represented as a feature vector in the developer
model. The structure of this feature vector is same
with the one of project model, so ClusterUCBscRec can
calculate the similarity of project and developer by linear
model.

3) Preferences, define developer preferences on program-
ming languages, frameworks, platforms, domain and
project type, represented as same as skill levels.

Both developers with history interaction records and new
developers without any records exist in our recommender

system. We use different ways to build their models. For new
developers, we assign zero vector as developer skill level and
preference feature vector. For experienced developers, Clus-
terUCBscRec will learn from their interactions, continuously
complete the developer model to shorten the developer cold-
start stage.

V. CLUSTERUCBSCREC RECOMMENDING AND LEARNING

In this section, we solve cold-start problem by ClusterUCB-
scRec. The two main components of ClusterUCBscRec are
recommending and learning.

A. ClusterUCBscRec Recommending

The recommender system is initiated by setting up project
cluster and developer cluster. There is only one project cluster
which contains all projects and this project cluster is related
to the developer cluster which contains all developers. The
cluster will be split and initiated when the first interaction
between developer and project comes.

When recommending request is received, ClusterUCBscRec
will calculate two variable values, named preference mark
(M1) and skill level mark (M2). All available projects are
filtered by these two marks one by one to get the to-be-
recommended project list. M1 is calculated by project and
developer model related to preference, considering the popu-
larity of projects and the time when the interaction happens. To
avoid the occupation of popular projects in recommendation
list and make the recommendation result more diverse, we
introduce variable h which represents the popularity of one
project cluster. The formula of h is defined below.

h = −arctan(α
ClusterRecommenationT imes

ClusterSize
)+1 , (1)

where ClusterRecommenationT imes is the sum of rec-
ommendation number of all projects in one project cluster,
ClusterSize is the number of projects in that cluster, and α
is a parameter.

The developers preference will probably change over time.
Thus different weights are applied to interactions which hap-
pened at different time. We assumes that the weight decays
exponentially with time. The weight vector c is updated each
time when recommendation happened. The new value of c is
calculated by:

c ∗ e(−γelapsedTime) (2)

where γ is a parameter, and elapsedT ime is the time passed
by since last recommendation [17].

Thus the formula of M1 is summed up to the following
one.

M1 = xTβ1 + α1

√
c1xTA1

−1x+ h, β1 = c1A−11 b1 , (3)

where A1 is the matrix related to history projects related to
developer preference, b1 is a vector related to effectiveness
of history interacted projects, and c1 is the preference weight
vector for developers. The larger parameter α1 is, the more
likely ClusterUCBscRec explores the preference of developers.

A1 matrix is generated by project feature vectors arranged
by interaction time, and vector b1 is generated by effectiveness.
Then we filters out projects whose M1 are among the lowest
20% of total projects.

After that, we calculate M2 of projects by using developer
skill model. Only projects which requirements are meet will
be recommended. M2 is calculated by the following formula:

M2 = yTβ2 + α2

√
c2yTA−12 y, β2 = c2A−12 b2 , (4)

where A2 is the matrix generated by the feature vector
of interacted projects related to skill level, and b2 is the
vector generated by effectiveness. The larger parameter α2

is, the more likely ClusterUCBscRec explores the skills of
developers.

We combines M1 and M2 together using the parameter α3

to get a final score.

M = M1 + α3M2 , (5)

Recommended projects are the projects with highest M value.
In production environment, the size of A1, A2, b1, b2

variables would be too big to calculate. Only intermediate
variables are used to prevent the variables being too big [6].

B. ClusterUCBscRec Learning

The learning process of ClusterUCBscRec is started when
new interaction between developers and projects is happened.
Learning is done by following steps.

1) Determine the interaction type. Interactions are deter-
mined by which model(preference or skill) they will
contribute to according to Table I.

2) Updating the developer model and the project model.
Each interaction has different effectiveness value. In-
spired by BiUCB, ClusterUCBscRec updates the devel-
oper and project models according to the effectiveness
value by following formula:

b = βb+ rx , (6)

where b is the preference or skill vector to be updated,
β, r are parameters, and x is the project feature vector.

3) Updating the developer cluster. ClusterUCBscRec re-
moves the developers in the same cluster, who differ
with the developer in a large scale. As we use linear
model to calculate the similarity, differing in a large
scale is defined by the following formula. Equation8 is
inspired by LinUCB.

|wTi x̄− wTj x̄| > CBi(x̄) + CBj(x̄) (7)

CBi(x̄) = α
√
xTi M−1xi log(t) (8)

where i is the developer interacting in the interaction, j
is the other developer in the cluster, w is the developers
feature vector, x is the feature vector of interacted
project, and t is the time when interaction happens.
Then, ClusterUCBscRec allocates removed developers

TABLE I
INTERACTION TYPE AND EFFECTIVENESS

Interaction name Effectiveness Type +/-
click/browse 0.1 preference +
favor 0.2 preference +
enroll in 0.3 preference +
enroll in succeeded 0.5 skill level +
contract signed 0.5 skill level +
acceptance accepted 0.8 skill level +
be recommended 0.3 skill level +
unfavor -0.2 preference -
ignore the recommendation -0.05 preference -
enroll in failed -0.5 preference -
contract refused -0.5 skill level -
acceptance refused -0.8 skill level -

in a new cluster. Next, we try finding a developer cluster
which doesn’t contain any developer that differs with the
interacted developer in a large scale. If found, merge the
new cluster into it. Otherwise this cluster becomes a new
developer cluster.

4) Updating the project cluster. ClusterUCBscRec removes
the projects which differ with interacted project in a
large scale from that cluster. Differing in a large scale
is defined by following formula.

I = {i|∃j, j ∈ U, i ∈ P,

|wTk xi − wTj xi| > CBk(xi)}+ CBj(xi)}
(9)

CBi(x) = α
√
xTi M−1xi log(t) (10)

where I is the cluster formatted by the removed projects,
U is the developer cluster which interacting developer
is located in, P is the project cluster which inter-
acted project is located, and t is the time at which
the interaction happens, α is a parameter. The feature
vector of projects in I is not updated, thus can be
considered as the “original” cluster and the cluster which
contains the interacted project should also be regarded
as changed in feature vector. Then, we try merging it
into the first cluster which doesn’t contain any project
that differs with the interacted project in a large scale
before registering it as a new cluster.

C. Recommendation Algorithm

Summing up, Algorithm 1 is the pseudo code of Clus-
terUCBscRec’s recommending process. Algorithm 2 is the
pseudocode of ClusterUCBscRec learning process.

VI. EXPERIMENTS

In this section, we describe the evaluation metrics, experi-
mental data, baseline algorithms and comparison results. Both
online and offline experiments are designed to answer the
following questions:

1) CTR: Does ClusterUCBscRec improve the CTR (click-
through-rate) of the developer? And how much?

2) Diversity recommendation: How about the diversity of
ClusterUCBscRec recommending when exploring the
preferences and skills of developers?

Algorithm 1 ClusterUCBscRec recommending
Input: u: developer;

P : recommendable project set;
N,α: parameters

Output: resultProjectList: recommended projects
Initialize: bi = 0, bi ∈ Rd,M1 = I ∈ Rd×d

G = U → P
1: wi = M−1i bi
2: Find the related developer cluster Nk for every project i
3: Calculate the average parameter
4: M̄Nk

= I +
∑
i∈Nk

Mi − I b̄ + Nk =
∑
i∈Nk

bi, w̄Nk
=

M̄−1Nk
b̄Nk

5: Calculate M1 for every project and do a filtering, calculate
M2 for the remaining projects and sort them according to
M2

6: Take N highest projects as the recom-
mended projects resultProjectList =
chooseTopNProjectByScore(u)

7: return resultProjectList

Algorithm 2 ClusterUCBscRec learning
Input: u: developer;

i: interaction type;
p: interacted project

Output: the updated developer variables, the updated project
variables

1: if i ∈ InterestRelatedInteraction then
2: r = getInteractionRewardFromTable(i)
3: bPinterest = βbpinterest + γrx
4: Vinterest = Vinterest + xxT

5: buinterest = βbuinterest + rxp

6: Uinterest = Uinterest + zzT

7: updateUserClusterLikeCOFIBA()
8: tryMergeItemCluster()
9: updateInterestItemClusterLikeCOFIBA()

10: else
11: r = getInteractionRewardFromTable(i)
12: bPskill = βbpskill + γrx, Vskill = Vskill + xxT

13: buskill = βbuskill + rxp, Uskill = Uskill + zzT

14: updateUserClusterLikeCOFIBA()
15: tryMergeItemCluster()
16: updateInterestItemClusterLikeCOFIBA()

3) Solving developer cold-start problem: How does Clus-
terUCBscRec solve the cold-start problem?

A. Evaluation Metrics

In this paper, we use three evaluation metrics: CTR, cov-
erage, and change of CTR to answer above three research
questions. The CTR is used to evaluate the precision of the
recommender system, which is defined by following formula:

CTR =
Clicked

Recommended
, (11)

where the Clicked is the number of clicked projects by
users, and Recommended is the number of projects that are
recommended to the users. If the project in one recommen-
dation is clicked multiple times, its clicked number is still 1.
If one project is recommended and clicked at two different
recommendations, its clicked number is 2.

The coverage is defined by following formula:

Coverage =
RecommendedCategories

TotalCategories
(12)

where the RecommendedCategories is the category number
of recommended projects, and TotalCategories is the cate-
gory number of all available projects.

The change of CTR is proposed to evaluate the ability of
algorithm to solve cold-start problem. If CTR increases with
the increase of recommendation number, the recommendation
system is thought to solve the cold-start problem well as
developer keeps clicking projects which is recommended by
the system.

B. Data Collections

We use the real-world dataset from JointForce, which has
1003 to-be-developed projects and 14850 active developers
who have valid interaction history in the platform. It has
295209 history interactions. While the online experiments
were performed after the recommender system has been inte-
grated and deployed in JointForce. Online experiments are car-
ried out to evaluate its performance in semi-real environment.
Due to our resource and time, 7 developers participated in our
online experiments. They interacted with the recommended
projects and top 10 projects were recommended to developers
during each recommendation.

C. Parameters

In our experiments, we find following values are suitable
for each parameters: b(in Equation6) = 0.8, r(in Equation6)
= 1, α(in Equation10) = 0.5 , α(in Equation8) = 0.5 , γ(in
Equation2) = 0.2, α1(in Equation3) = 0.4, c1(in Equation3)
= 1, α2(in Equation4) = 0.4, c2(in Equation4) = 1, α3(in
Equation5) = 0.4.

D. Baseline Algorithms

ClusterUCBscRec is compared with two baselines algo-
rithms.

1) COFIBA. COFIBA [5] is a reinforcement learning
algorithm that applies clustering into recommendation
system.

2) BiUCB. BiUCB [6] is a reinforcement learning algo-
rithm that updates item model on the fly, which makes
it better in handling the dynamic states of both users and
items.

E. Experiment Results

1) CTR And Coverage: The results of offline and online
experiments on CTR and coverage are shown in Table II. Clus-
terUCBscRec performs best in CTR among three algorithms.

TABLE II
CTR AND COVERAGE

Algorithm CTR Coverage Experiment
COFIBA 14.8 23.9 offline
BiUCB 8.5 69.0 offline

ClusterUCBscRec 15 77.9 offline
COFIBA 39.7 25.9 online
BiUCB 41.3 64.9 online

ClusterUCBscRec 43.6 70.0 online

It improves CTR by 0.2% in offline experiment and 3.9% in
online experiment.

Ans. to RQ1: ClusterUCBscRec outperforms two baselines
algorithms, BiUCB and COFIBA, in the precision of recom-
mendation.

As for the coverage metric, ClusterUCBscRec also performs
best, which improves coverage by 8.9% in offline experi-
ment and 5.1% in online experiment. This demonstrates that
ClusterUCBscRec provides more diversity recommendation
through the exploiting strategy.

ClusterUCBscRec has reached a balance between the “ex-
plore” and “exploit” strategies, while BiUCB achieves high
coverage but too low CTR; this could be related to that
the aggressive update on project models results in consistent
”explore” strategy.

Ans. to RQ2: ClusterUCBscRec generates more diversity
recommendation across all categories of projects, while main-
taining comparable levels of recommendation accuracy.

In addition, we find evidently that the results between offline
and online experiments are quite different. The reason is that,
in offline experiment, the recommending algorithm can’t get
the user feedbacks on the recommended projects, and thus
can’t learn well. Obviously, the results of online experiment
are more authentic than offline experiment.

2) CTR Change: Figure 2 shows how CTR changes in the
offline experiment. In this experiment, we show that the cold-
start problem is effectively solved by our algorithm by a more
stable CTR increasing speed. As user cold-start problem will
prevent recommendation system from improving its perfor-
mance, or more specifically the CTR, we will show that our
recommendation system will keep improving its performance
during the cold-start stage.

The value of CTR at each point is the average of 20
recommendation results. For example, the CTR at 20 is the
average CTR of first 20 recommendations, the CTR at 40
is the average CTR of 20-40 recommendations. As expected,
the CTR of COFIBA drops after touching the peak around
60 recommendations. The CTR of ClusterUCBscRec keeps
increasing and is always higher than the one of BiUCB. CTR
of ClusterUCBscRec keeps increasing during the experiments,
which indicates that ClusterUCBscRec can solve developer
cold-start problem well.

The CTR changes in online experiment are shown in Fig-
ure 3, whose trend is the same as that in offline experiment.

0 20 40 60 80 100
0
5

10
15
20
25
30
35
40
45
50
55
60

Recommendation Times

C
T

R
[%

]

COFIBA
BiUCB
ClusterUCBscRec

Fig. 2. CTR change in offline experiment

0 20 40 60 80 100
0
5

10
15
20
25
30
35
40
45
50
55
60

Recommendation Times

C
T

R
[%

]

COFIBA
BiUCB
ClusterUCBscRec

Fig. 3. CTR change in online experiment

The CTR of BiUCB is much closer to the one of ClusterUCB-
scRec. The CTR of COFIBA reaches a peak and drops quickly.

Ans. to RQ3: ClusterUCBscRec can deal with developer cold-
start problem well.

VII. CONCLUSION

Software crowdsourcing recommendations suffer from a
severe cold-start problem, significantly reducing the capability
of recommendations in practice. ClusterUCBscRec is a novel,
clustering based reinforcement learning solution to the cold
start problem in crowdsourcing recommendations. Developer
models and project models are enhanced continuously through
learning user feedback and behaviors.

The evaluation results clearly show that ClusterUCBscRec
outperforms existing algorithms in solving the cold-start prob-
lem. It reduces the total number of recommendations and the
time we need to go through the cold-start stage. This fact
makes us believe that our approach is general, and useful for
many practical crowdsourcing recommendations.

As for our future work, we plan to explore the project cold-
start problem in depth, i.e., recommend developers to cold-start

projects, which is equally important. After we collect a large
size of historical data from the deployed recommender system,
we will exploit the deep learning models to further improve
the recommending performances.

VIII. ACKNOWLEDGEMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242).

REFERENCES

[1] T. D. LaToza and A. van der Hoek, “Crowdsourcing in software engi-
neering: Models, motivations, and challenges,” IEEE software, vol. 33,
no. 1, pp. 74–80, 2016.

[2] A. V. Prando, F. Contratres, S. Souza, and L. De Souza, “Content-
based recommender system using social networks for cold-start users,”
in Proceedings of the 9th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, vol. 1,
2017, pp. 181–189.

[3] M. Elahi, F. Ricci, and N. Rubens, “A survey of active learning in
collaborative filtering recommender systems,” Computer Science Review,
vol. 20, pp. 29–50, 2016.

[4] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on World wide web. ACM, 2010,
pp. 661–670.

[5] S. Li, A. Karatzoglou, and C. Gentile, “Collaborative filtering bandits,”
in Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval. ACM, 2016, pp.
539–548.

[6] L. Wang, C. Wang, K. Wang, and X. He, “BiUCB: A Contextual
Bandit Algorithm for Cold-Start and Diversified Recommendation,” in
Big Knowledge (ICBK), 2017 IEEE International Conference on. IEEE,
2017, pp. 248–253.

[7] S. Choi, H. Ha, U. Hwang, C. Kim, J.-W. Ha, and S. Yoon, “Re-
inforcement Learning based Recommender System using Biclustering
Technique,” arXiv preprint arXiv:1801.05532, 2018.

[8] M.-C. Yuen, I. King, and K.-S. Leung, “Task recommendation in crowd-
sourcing systems,” in Proceedings of the first international workshop on
crowdsourcing and data mining. ACM, 2012, pp. 22–26.

[9] M. Safran and D. Che, “Real-time recommendation algorithms for
crowdsourcing systems,” Applied Computing and Informatics, vol. 13,
no. 1, pp. 47–56, 2017.

[10] J. Zhu, B. Shen, and F. Hu, “A learning to rank framework for developer
recommendation in software crowdsourcing,” in Software Engineering
Conference (APSEC), 2015 Asia-Pacific. IEEE, 2015, pp. 285–292.

[11] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, “Developer rec-
ommendation for crowdsourced software development tasks,” in Service-
Oriented System Engineering (SOSE), 2015 IEEE Symposium on. IEEE,
2015, pp. 347–356.

[12] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, “Addressing cold-
start problem in recommendation systems,” in Proceedings of the 2nd
international conference on Ubiquitous information management and
communication. ACM, 2008, pp. 208–211.

[13] M. S. Crane, “The new user problem in collaborative filtering,” Ph.D.
dissertation, University of Otago, 2011.

[14] J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua, “Addressing cold-start
in app recommendation: latent user models constructed from twitter fol-
lowers,” in Proceedings of the 36th international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2013,
pp. 283–292.

[15] R. S. Sutton, A. G. Barto, and Others, Reinforcement learning: An
introduction. MIT press, 1998.

[16] S. L. Scott, “A modern Bayesian look at the multi-armed bandit,”
Applied Stochastic Models in Business and Industry, vol. 26, no. 6,
pp. 639–658, 2010.

[17] E. Liebman, M. Saar-Tsechansky, and P. Stone, “Dj-mc: A
reinforcement-learning agent for music playlist recommendation,” in
Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2015, pp. 591–599.

