
Compressed C4.5 Models for Software Defect
Prediction

Jun Wang, Beijun Shen and Yuting Chen
School of Software

Shanghai Jiao Tong University

Shanghai 200240, China

deathspeeder@sjtu.edu.cn, {shen-bj,chenyt}@cs.sjtu.edu.cn

Abstract—Defects in every software must be handled properly,
and the number of defects directly reflects the quality of a
software. In recent years, researchers have applied data mining
and machine learning methods to predicting software defects.
However, in their studies, the method in which the machine
learning models are directly adopted may not be precise enough.
Optimizing the machine learning models used in defects predic-
tion will improve the prediction accuracy.

In this paper, aiming at the characteristics of the metrics
mined from the open source software, we proposed three new
defect prediction models based on C4.5 model. The new models
introduce the Spearman’s rank correlation coefficient to the basis
of choosing root node of the decision tree which makes the models
better on defects prediction. In order to verify the effectiveness
of the improved models, an experimental scheme is designed. In
the experiment, we compared the prediction accuracies of the
existing models and the improved models and the result showed
that the improved models reduced the size of the decision tree
by 49.91% on average and increased the prediction accuracy by
4.58% and 4.87% on two modules used in the experiment.

I. INTRODUCTION

Software defect prediction is a technique used to predict

both the number and type of defects in a software system

on the basis of some software metrics, such as source code

changes, previous defects, etc. It has drawn great attentions

from both researchers and software practitioners. One main

reason for this is that during the software development process,

a defect prediction technique allows a manager to invest

resources proactively (rather than reactively) and therefore

saves the time and cost for finding bugs and then fixing them.

However, some software defect prediction techniques assume

that the number of software defects depends on the size of the

software, which is not true for most modern software systems.

For this reason, software repository mining techniques can

provide us the opportunities to mine these metrics and apply

them in the prediction of software defects (i.e., [1]–[4]).

Usually, to predict software defects, the prediction model

needs to be built on the basis of which an algorithm takes the

objective software as input, and produces some predictions

on defects as output. Some machine learning algorithms (i.e.

naive Bayes, Bayesian networks, decision trees, and neural

networks, etc.) have been adopted to software defect prediction

(i.e., [4]–[7]), but they may not be precise enough. For exam-

ple, Knab et al. have applied decision tree learners to predict

defects on the basis of source code metrics, modification report

metrics and defect report metrics and achieved 62 percentages

on prediction accuracy [4] but wrongly classified nearly 40

percent of instances. An optimization of the decision tree

algorithm is expected to help us achieve an accurate prediction.

In this paper we investigate some software prediction mod-

els and then aiming at the characteristics of the metrics mined

from some open source software repositories, we propose

three new defect prediction models based on C4.5 algorithm.

C4.5 algorithm is an algorithm developed by Quinlan which

is to build a decision tree from a set of training data, using

the concept of information entropy [8]. The Spearman’s rank

correlation coefficient is introduced into the new models to

make the choosing of attribute as the root node of the decision

tree much more in line with the actual situation. In order to

verify the effectiveness of the new models, we have designed

an experiment to compare the prediction accuracies of the

existing model and the improved models. Experiment on two

Eclipse modules has shown that the improved models can

significantly reduce the size of the decision trees and increase

the prediction accuracy of these two modules by 4.58% and

4.87% respectively.

The remainder of this paper is organized as follows: Section

II presents some background knowledge. In section III, we

present the improved models. In section IV, we explain the

experiment designed for comparison of defects prediction

models. The result of the experiment and the discussion on it

are presented in section V. Section VI draws the conclusions

and indicates the future work.

II. PRELIMINARIES

We introduce some concepts from C4.5 algorithm [8] and

then introduce the Spearman’s rank correlation coefficient.

A. The C4.5 Algorithm

Let S be a set with n data samples. Divide the sample set S
into c different classes Ci(i = 1, 2, · · · , c), and every class Ci

has ni samples. Then the entropy of dividing S into c classes

is defined,

E(S) ≡ −
c∑

i=1

pi log2(pi) (1)

2012 12th International Conference on Quality Software

1550-6002/12 $26.00 © 2012 IEEE

DOI 10.1109/QSIC.2012.19

13

where pi =
ni

n
is the probability of a sample in S that

belongs to class Ci. Entropy characterizes the purity of a

sample set.

Let the set of all the different values of attribute A be XA,

and Sv be the sub-set of samples with value v on attribute A,

that is Sv = {s ∈ S|A(s) = v}. After an attribute A is chosen

to be the root of a sub-tree, the entropy of classifying Sv is

defined,

E(S,A) ≡
∑

v∈XA

|Sv|
|S|E(Sv) (2)

where E(Sv) is the entropy of dividing samples in set Sv

into c classes. The information gain of attribute A to the

sample set S is,

Gain(S,A) ≡ E(S)− E(S,A) (3)

C4.5 uses gain ratio as the basis of choosing attributes as

the root of a sub-tree when the decision tree is constructed.

The gain ratio is,

GainRatio(S,A) ≡ Gain(S,A)

SplitInfo(S,A)
(4)

where, split information is,

SplitInfo(S,A) ≡ −
c∑

i=1

|Si|
|S| log2

|Si|
|S| (5)

where Si is c sample sub-sets by dividing S using c values

of attribute A. Split information is the entropy of S on all

values of attribute A.

B. Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation coefficient is used to

study the relationship between two variables and to quantify

the degree of correlation of two columns of data which is

defined as the Pearson correlation coefficient between the

ranked variables. It is calculated during the construction of

the decision tree by choosing an attribute with values from all

instances as Xi letting defects number of every instance be Yi

and then converting the n raw scores Xi, Yi to ranks xi, yi.
The Spearman correlation coefficient ρ is computed:

ρ ≡
∑

i(xi − x)(yi − y)√∑
i(xi − x)2

∑
i(yi − y)2

(6)

Tied values are assigned a rank equal to the average of their

positions in the ascending order of the values. For example,

the third and forth values are equal, and the corresponding

rank would be
3 + 4

2
= 3.5.

III. COMPRESSED C4.5 MODELS

A. Compressed C4.5 Model I

Our first model multiplies the Spearman’s correlation coeffi-

cient and the gain ratio, and then use the product to replace the

original gain ratio for selecting test attributes. The Spearman’s

rank correlation coefficient can be positive or negative.

The new gain ratio in compressed C4.5 model I is defined,

GRMod1 (S ,A) ≡ GainRatio(S ,A)× ρ (7)

We introduce the Spearman’s rank correlation coefficient by

multiplying it with the gain ratio. The reason is that both the

gain ratio and the Spearman’s rank correlation coefficient can

represent the relationship between the metrics and the defects,

while the weights of them are not clear. So we would adopt

multiplication instead of using addition.

B. Compressed C4.5 Model II

We propose our second compressed C4.5 model, in which

the Spearman’s rank correlation coefficients are sorted in

ascending order. Let the ranks of the coefficients be Rank(ρ).
Compressed C4.5 model II uses Rank(ρ) instead of ρ as

multiplier. This method ignores the value of the Spearman’s

rank correlation coefficient, and takes the importance of every

attribute into account.

The gain ratio for compressed C4.5 model II is defined,

GRMod2 (S ,A) ≡ GainRatio(S ,A)× Rank(ρ) (8)

C. Compressed C4.5 Model III

Compressed C4.5 model III introduces the Spearman’s rank

correlation coefficient into the process of calculating gain ratio

in order to balance the fluctuation of gain ratio in different

metrics. The main idea of C4.5 algorithm is to choose the

attribute with the biggest information gain (in C4.5, the basis

of choosing root node is gain ratio which is calculated by

dividing information gain by split information, however, split

information is introduced only to solve the multi-valued bias

problem in ID3 [9], the ancestor of C4.5.) as the root node of

a sub-tree in which the information gain is the compression

of the entropy expectation caused by assigning the value

of attribute A. Along with the information gain, we adopt

Spearman’s rank correlation coefficient as the basis too. The

first step of the compressed C4.5 model III is to reduce

the importance of information gain. Therefor, we re-define

E(S,A), and the entropy of classifying Sv by attribute A is,

E′(S,A) ≡
∑

v∈XA

(
|Sv|
|S| + ρ)E(Sv) (9)

Since the split information is used to reduce the influence

of the multi-valued bias problem, we keep it in step two of

the compressed C4.5 model III, but make it more significant

in calculating gain ratio. Split information in formula (5) is

re-defined,

14

SplitInfo′(S,A) ≡ −
c∑

i=1

(
|Si|
|S| + ρ) log2

|Si|
|S| (10)

The modified gain ratio is calculated,

GRMod3 (S ,A) ≡ Gain ′(S ,A)
SplitInfo′(S ,A)

=
E (S)− E ′(S ,A)
SplitInfo′(S ,A)

(11)

IV. EXPERIMENT PREPARATION

Our experiment is designed to evaluate the new models for

prediction of software defects.The predict process is divided

into three steps: mining metrics from software repository in-

cluding source code metrics, change metrics and defect history

metrics; comparing existing models by inputting formatted

metrics into several existing machine learning models and out-

putting prediction accuracy; verifying the effectiveness of the

improved models by comparing with the existing models. Fig.

1 shows the work-flow of the experiment, where Understand
tool1 is used to extract source code metrics from source codes;

FilterMetrics tool, LinkBugs tool and GenerateWekaData tool

are utilities developed by the authors to filter metrics from

Understand tool and to mine change metrics and defect metrics

and format metrics according to ARFF format2 respectively.

Understand
Metrics

Software
Repository

Source Code
Metrics

Change
& History

Metrics

ARFF files

Prediction
Model

Improved
Model

Defects
Density

Understand tool

FilterMetrics tool

LinkBugs tool

Generate
Weka

Data tool

In
pu

t

Improve

Output

Output

In
p
u
t

Fig. 1. Defect Prediction Process

Along with our three new models, three existing machine

learning models are selected to predict defects: naive Bayes,

C4.5 and CART. For every model, the size of the model and

the classification accuracy of training data set and testing data

set are recorded. The inputs of models include 11 source code

metrics, NR metric and defect history metric. The output of

models is the classification of the source code files into ten

levels by their defects number. In this paper, a tool named

WEKA3 is used to predict defects.

1http://www.scitools.com/index.php
2An ARFF (Attribute-Relation File Format) file is an ASCII text

file that describes a list of instances sharing a set of attributes.
http://www.cs.waikato.ac.nz/˜ml/weka/arff.html

3http://www.cs.waikato.ac.nz/ml/weka/

Two modules from Eclipse4 are selected as the subjects

of our experiment: org.eclipse.jdt.core and org.eclipse.pde.ui.
There are nine versions are studied in our experiment.

TABLE I

VERSIONS OF ECLIPSE

Version Release Date Classes in jdt.core Classes in pde.ui
2.0 June 27, 2002 811 538

2.1 March 27, 2003 842 720

3.0 June 24, 2004 940 793

3.1 June 27, 2005 1045 921

3.2 June 6, 2006 1112 1200

3.3 June 21, 2007 1132 1525

3.4 June 13, 2008 1181 1671

3.5 May 27, 2009 1189 1499

3.6 June 3, 2010 1181 1573

The CVS repository of Eclipse5 is downloaded at March 29,

2011. And the bug reports6 of org.eclipse.jdt.core are exported

at April 8, 2011 and the bug reports of org.eclipse.pde.ui are

exported at April 21, 2011.

V. RESULT AND ANALYSIS

In our experiment, three existing models are compared with

each other. We can compare these three existing models by

analyzing their confusion matrixs (when classifying instances,

a confusion matrix will be generated by WEKA for every

model.) and the classification accuracy in table II. Note

that CART model does not build a valid decision tree on

org.eclise.pde.ui (CART model seems to simplify a decision

tree as much as possible so that it can classify all instances

into Level 1, Level 2 or Level 10. But in practice, this is not

the case.). By comparison, we conclude that C4.5 is the best

while naive Bayes ranks second and CART follows.

TABLE II

COMPARISON OF EXISTING MODELS

Naive Bayes CART C4.5

jdt.core
Training Set (%) 48.5973 55.5853 71.8057

Testing Set (%) 75.3181 83.1213 80.3223

pde.ui
Training Set (%) 61.7496 - 76.354

Testing Set (%) 75.8003 - 83.2266

We compare our three compressed C4.5 models with C4.5.

The prediction accuracies of compressed C4.5 model I and II

are close to each other both on training set and testing set

which indicates that ρ and Rank(ρ) have the same contribu-

tion to prediction accuracy. Compared with C4.5 model, our

compressed C4.5 model III improves the prediction accuracy

on testing data sets by 4.5802 percentages and 4.8656 per-

centages on modules org.eclipse.jdt.core and org.eclipse.pde.ui
respectively.

4http://www.eclipse.org
5http://archive.eclipse.org/arch/
6https://bugs.eclipse.org/bugs/

15

TABLE III

COMPARISON OF COMPRESSED C4.5 MODELS AND C4.5 MODEL

C4.5 CCM I CCM II CCM III

jdt.core
Training

set (%)

71.8057 65.5828 67.8526 57.1538

Testing

set (%)

80.3223 80.5768 80.4071 84.9025

pde.ui
Training

set (%)

76.354 74.5633 72.3323 67.4886

Testing

set (%)

83.2266 83.2907 85.5314 88.0922

The size of a generated decision tree represented by leaf

nodes number and non-leaf nodes number is the key factor

that determines the running time of classifying defects and

therefore reflects the efficiency of the models. In our experi-

ment, CART model, C4.5 model and three Compressed C4.5

Models generate decision trees. The sizes of these trees are

shown in table IV.

TABLE IV

SIZE OF DECISION TREES

Model
jdt.core pde.ui

non-leaves leaves non-leaves leaves

CART 33 17 0 1

C4.5 1729 865 831 416

CCM I 1093 520 637 319

CCM II 1401 701 507 254

CCM III 193 97 33 17

The sizes of compressed C4.5 models are smaller than

C4.5, however, the prediction accuracies are higher than C4.5

model’s. From table III we know that these three compressed

C4.5 models are more accurate than C4.5 on classifying testing

set data. This means the effectiveness of the compressed C4.5

models is verified.

VI. CONCLUSION AND FUTURE WORK

The goal of this paper is to improve the software defect

prediction accuracy. To achieve this, we designed a research

scheme, and finally proposed Compressed C4.5 Models. By

experiment, we conclude that:

• When predicting defects on two modules from Eclipse,

the accuracy of C4.5 model is better than that of naive

Bayes model both on training set and testing set;

• When applying CART model to software with few de-

fects may easily generate a simple decision tree which

classifies all instances into one or two levels and gives

meaningless prediction;

• The prediction accuracies of Compressed C4.5 Model

I and II are close to each other, which means the

introduction of Spearman’s rank correlation coefficient ρ

and the introduction of Rank(ρ) have generally the same

effects;

• The Compressed C4.5 Model III decreases the size

of decision tree and improves the prediction accuracy

on testing data set by 4.58% and 4.87% on modules

org.eclipse.jdt.core and org.eclipse.pde.ui compared with

C4.5 model.

The disadvantage of our experiment is the choosing of

modules. Both of the two modules studied in this paper have

few defects and the distribution of defects tends to one or two

defects in one file. This generates a little interference to the

comparison of compressed C4.5 models and existing models.

The future work can be applying Compressed C4.5 Models

to more open source software to overcome the problem of few

defects in a file. We can also focus on mining metrics based on

the characteristics of open source software to achieve higher

defect prediction accuracy.

VII. ACKNOWLEDGMENTS

We would like to thank Hongyu Zhang (Tsinghua Uni-

versity) for reviewing earlier drafts of this paper and giving

several valuable comments. In addition Yuting Chen is also

supported by the NSFC Grant (No. 61100051).

REFERENCES

[1] M. Takahashi and Y. Kamayachi, “An empirical study of a model for
program error prediction,” Software Engineering, IEEE Transactions on,
vol. 15, no. 1, pp. 82 –86, Jan. 1989.

[2] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” Software
Maintenance, IEEE International Conference on, vol. 0, p. 23, 2003.

[3] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the
26th International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 563–572.
[Online]. Available: http://portal.acm.org/citation.cfm?id=998675.999460

[4] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect densities in
source code files with decision tree learners,” in Proceedings of the 2006
international workshop on Mining software repositories, ser. MSR ’06.
New York, NY, USA: ACM, 2006, pp. 119–125. [Online]. Available:
http://doi.acm.org/10.1145/1137983.1138012

[5] F. Xing, P. Guo, and M. R. Lyu, “A novel method for early software
quality prediction based on support vector machine,” Software Reliability
Engineering, International Symposium on, vol. 0, pp. 213–222, 2005.

[6] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez,
P. Krause, and R. Mishra, “Predicting software defects in
varying development lifecycles using bayesian nets,” Information
and Software Technology, vol. 49, no. 1, pp. 32–43, 2007, most
Cited Journal Articles in Software Engineering - 2000. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V0B-
4M4CN0C-3/2/1fde90c721bf40bca6a3c91128794148

[7] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. D. Backer, and
R. Haesen, “Mining software repositories for comprehensible software
fault prediction models,” Journal of Systems and Software, vol. 81, no. 5,
pp. 823–839, 2008, software Process and Product Measurement. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V0N-
4PHSC3R-2/2/129ce670cc51b090011f548066bb5711

[8] J. R. Quinlan, C4.5: Programs for machine learning. The Morgan Kauf-
mann Series in Machine Learning, San Mateo, CA: Morgan Kaufmann,
1993.

[9] ——, “Induction of decision trees,” Machine Learning, vol. 1,
pp. 81–106, 1986, 10.1007/BF00116251. [Online]. Available:
http://dx.doi.org/10.1007/BF00116251

16

