
Operational Pattern Based Code Generation For Management

Information System: An Industrial Case Study

[Anonymized for Blind Review]

Abstract—Code generation technology can significantly

improve productivity and software quality. However, due to

limited financial and human resources in most of small and

medium software enterprises, there are many challenges when

leveraging code generation approaches to large-scale software

development. In this paper, an operational pattern based code

generation approach is proposed for rapid development of

domain-specific management information system. We

demonstrate the approach with details: (I) semi-automatically

extracting operational patterns from requirement documents, (II)

building feature models to manage the commonalities and

variability of each operational pattern, (III) mapping operational

patterns into skeleton code with a template-based code generation

technique, etc. Then we conduct an industrial case study in asset

information management domain at CancoSoft Company for

about 2 years, to analyze its feasibility and efficiency. 14

operational patterns are successfully extracted from 355 initial key

phrases, and a code generator is implemented and applied to

develop new Web applications. Preliminary findings show that the

software development based on our approach yields a nearly 30%

higher productivity as compared to traditional software

development. Through code analysis, we find that around 70% of

code can be automatically generated, and the generated code is

also effective.

Keywords—Operational Pattern, Code Generation, Software

Product Line, Domain Engineering, Exploratory Case Study.

Category: other (software reuse)

I. INTRODUCTION

Code generation can automate source code creation through
generic frames, classes, prototypes, templates, aspects, and code
generators to improve programmers’ productivity [1]. It is an
effective method to achieve software reuse in application
development and has many successful cases in embedded
software [2], web applications [3] and distributed client-server
systems [4].

There are four common approaches to using code
generation technology in large-scale, industrialized software
development. However, due to limited financial and human
resources in most Small and Medium Software Enterprises
(SMSEs), there are many challenges for these approaches. The
details are listed as following:

(1) Model-Driven Development (MDD) focuses on code
generation from models and the executability of models [5].
MDD defines the Platform-Independent Model (PIM) at a high
level of abstraction and then defines rules to transform the PIM
to Platform Specific Models (PSMs). Finally, code in some third
generation languages (e.g., C++, Java) is automatically
generated from PSMs. Some transformation tools are available
as RSA, AndroMDA, ECO II, EMF, etc. However, extensive
handcrafting of implementations is required for multiple levels

of abstraction, detailed design models, and automated support
for transforming and analyzing models, which may cause
accidental complexities that make software development
difficult and costly[6][7].

(2) Domain Specific Language (DSL) is a small, usually
declarative, language that offers expressive power focused on a
particular problem domain [8]. With tool support, the code can
be directly generated from a high-level abstract description
defined in DSL. The cost of designing, implementing and
maintaining a DSL, as well as training for DSL users is high.
In addition, there are difficulties in integrating DSL with
other components in a software system [10].

(3) Software Product Line Engineering (SPLE) is a
paradigm to develop software applications using platforms and
mass customization [11]. In domain engineering process of
SPLE, commonalities and variability of a product line are
defined and realized. In application engineering process of
SPLE, applications of a product line are built by reusing
domain artifacts and exploiting configurable variability. Code
generation approaches, including generative programming [4]
and two approaches mentioned above, can be applied to reuse
software artifacts to quickly build new applications in SPLE.
However, in an SPLE approach, it takes nearly 444 person
months for a typical product line supposing that each product
size is 100-kilo source lines of code (KLOC) [12]. Taking
into account the urgent market need for a product, the
introduction of product lines will cause a long delay to
delivery time.

(4) Program synthesis is the task of automatically
synthesizing a program in some underlying language from a
given specification using some search technique [13]. It can
aid in automated debugging and, in general, leaves the human
programmer free to deal with a high-level design of the
system. Additionally, synthesis can discover new non-trivial
programs that are difficult for programmers to build [14].
Microsoft Research Redmond lab has made some
achievements in the program synthesis. A preliminary summary
of issues and methods are discussed in [14][15]. But the
program synthesis is mainly used in the generation of new
algorithms, and it is still in its infancy for generating
application code.

Just in this content, this paper is motivated by the need to
provide a feasible approach for SMSEs to adopt code generation
technology on software development with a higher productivity
and no adverse effect on quality. In our approach, the code is
generated from templates which are developed from legacy
software artifacts, while the code is directly generated from
well-designed models in MDD. We focus more on specific
domains and application code generation, which makes our
approach different from program synthesis. The metadata of

configuration is defined in eXtensible Markup Language (XML),
which avoids the challenges of DSL. Our approach consists of
domain engineering and application engineering, which are
tailored from SPLE. But we shrink the variability management
on only one aspect that is the operational pattern. The case study
suggests that the simplification to SPLE is feasible in the
software development of asset information management domain.
In summary, we have made the following two contributions:

(1) We propose an Operational Pattern based Code
Generation (OPCG) approach for SMSEs in information
management domain. In essence, diverse methods from MDD,
DSL, SPLE and Natural Language Processing (NLP) are
integrated and tailored in the OPCG approach to maximize the
development productivity and minimize negative effort on
project quality.

(2) We report on the design and execution of a case study in
asset information management domain. In our study, we
implement our approach and practically apply it to new Web
application development. Data are collected from 5 projects at
Shanghai Canco Software Co., Ltd. (CancoSoft). Result analysis
show that: first, the productivity of the OPCG-based software
development is improved by almost 30% compared to
traditional software development, and defect density is reduced.
Second, around 70% of code can be automatically generated.

The rest of this paper is structured as follows. Section II
describes the OPCG approach, including semi-automatic
extraction of operational patterns and template-based code
generation. Then in section III, we describe the design and
execution of our field study. After analyzing the data collected
from projects, we provide answers to our RQs and have a
discussion on our work in section IV and V. Conclusions and
future work are discussed at the end of this paper.

II. OPERATIONAL PATTERN BASED CODE GENERATION

APPROACH

In this section, we first give the definition of operational
pattern and then propose a novel domain-specific code
generation approach based on OPs. Two key technologies in the
approach are described in details, namely extraction and
modeling of OPs, and template-based code generation.

TABLE I. ANATOMY TABLE OF OPERATIONAL PATTERN

Attributes Explanation

Name Name of OP.

Version Version number.

Date Date of the nearest modification.

Author Author or organization that fill this table.

Description Describe what the OP is.

Keywords
Representative keywords or tags related to this OP. They
can help match this OP to specific operations.

Dependencies Other OPs that this OP depends on.

Constraints Describe internal or external constraints.

Pre-Condition Conditions before applying this OP.

Post-Condition Conditions or results after applying this OP.

Sequences A sequence of operations that this OP consists of.

Common
Aspects

Common aspects of each operation will be emphasized
here.

Variation

Aspects

Variable aspects of each operation are extracted here. They
can be optional operations or internal variability of an
operation.

Known Uses Uses (or functions) are known as containing this OP.

Comments Other complementary description.

A. Operational Pattern

As a specific software requirement pattern [16][17],
Operational Pattern (OP) is a reusable sequence of operations
that frequently appear in a series of Software Requirements
Specifications (SRSs). By transforming the operational patterns
to code directly, the coding effort on implementing repeated
operations can also be avoided in the software development
of a specific domain. An OP contains 15 attributes as shown
in Table I.

B. OPCG

Based on operational patterns, we propose a novel domain-
specific code generation approach named OPCG approach, as
shown in Fig. 1. It adopts domain-oriented software
development method and consists of two phases: domain
engineering phase for reuse and application engineering phase
with reuse.

Analyze System
Commonality

Extract and
Refactor

Components

Extract and
Refactor

Architecture

Extract
Operational

Patterns (OPs)

Build CV Model
of OPs

Generate Code

Define
Templates

Configure
Variability of

OPs

Merge Code

Operational Patterns

Variability

Domain Architectures

Templates

Skeleton Code Decorate Code
Manually

New Application
Code

Configurations

Components

Domain
Component

Library

Legacy
Systems

New
Application

Requirements

Define
Configuration

Metadata

Domain Engineering

Application Engineering

Commonalities

1

3 2 4

5

6

7

9 8

10

11

Fig. 1. The OPCG Approach

The domain engineering phase involves identifying
commonalities and differences between legacy systems in a
domain and implementing a set of shared software artifacts [18].

[Step 1] System commonality is analyzed to find reusable
parts from legacy software artifacts, including documents (SRSs,
design documents, user manual, etc.) and code.

[Step 2] Domain architecture are extracted and refactored.
Architects first have to identify key requirements that have an
essential impact on the architecture, and then create a conceptual
architecture before building structural models of the software
[11]. Structural models decompose legacy software systems into
parts and relationships with some architecture views, such as
development view and process view. To get a reference
architecture that captures a high-level design for all applications,
architects need to refactor the domain architecture extracted

from legacy systems, adopting architecture style, design pattern,
and new technologies.

[Step 3] Components are extracted and refactored following
Step 2. Some important tasks of extracting components are to
identify reusable modules and to extract common parts for
refactoring high-quality components. Component refactoring
involves component redesign, in which dependency of the
component configuration in a specific legacy application is
removed. In addition, variable interfaces and implementation of
a component are required to meet various application
requirements.

[Step 4 and Step 5] OPs are semi-automatically extracted and
feature models are built on Commonalities and Variability (CV)
of OPs. Details are explained in the following subsection C.

[Step 6] Templates are defined according to commonalities
of OPs and domain architecture. A template is “an output
document with embedded actions which are evaluated when
rendering the template” [21]. The fixed part of the template is
copied to the output without modification while placeholders are
replaced with actions or expressions when processing templates.

[Step 7] Metadata of configuration is defined according to
variabilities of OPs. The metadata is a collection of elements and
attributes to configure the variability into a series of
configuration files based on XML. The difference between
templates and configurations is: templates contain all possible
combinations of code, while configurations are to make a valid
combination of code according to a specific requirement.

In the application engineering phase, applications are
efficiently developed by reusing software artifacts prepared in
the domain engineering phase.

[Step 8] The variability of OPs is configured upon new
application requirements with the metadata of configurations.

[Step 9] Code is generated with the inputs of domain
components, templates, and configurations. In order to apply the
commonalities and variability of each OP into concrete code
with high efficiency, a template-based code generation strategy
is needed. The output is skeleton code, which consists of the
code fragments mapping to the architecture, components, and
definite operations. The template-based code generation
technology is explained in subsection D.

[Step 10] The skeleton code lacks specific business logic
code, so developers need to decorate the skeleton code manually,
including adding new code and modifying generated code.

[Step 11] Requirements change frequently and part of the
skeleton code needs to be regenerated. New application code is
obtained by merging the regenerated skeleton code and the
decorated code (for several times).

In the next two subsections, extraction and CV modeling of
OPs, and template-based code generation are explained in
details.

C. Extraction and CV Modeling of OPs

The extraction of OPs is divided into three steps. After that,
OPs are specified with feature models through the commonality
and variability analysis.

1) Identify Key Phrases: Requirement documents are
usually non-structural and written by different authors in natural
language. In order to identify key phrases from requirements
automatically, we leverage some natural language processing
techniques combined with some simple but effective heuristic
rules to design our extraction algorithm. There are three main
parts in our extractor, namely dependency analyzer, key phrase
extractor and key phrase filter.

Dependency analyzer provides a representation of
grammatical relations between words in a sentence. A
dependency analyzer is implemented by using Stanford Parser.
Based on the dependencies, we design a rule-based algorithm to
extract phrases in a sentence. A phrase can be represented as
two-tuples (p, o), where p indicates the predicate and o
indicates the object. The predicate of a sentence can be captured
by root (more details about this symbol can be found in [19])
and extracted directly from dependencies. For each dependency,
we first check whether the governor of this dependency is the
root node. Then, if the relation name is dobj (means a direct
object) or nsubjpass (means a passive nominal subject), the
dependent of this dependency is right the object (See Algorithm
1). Since the noun phrase in a sentence will be split by nn
relation (nn(record-4, repair-3)), a Merge operation will be
carried to construct the whole name of the object. After this step,
all the candidate phases are obtained. For example, the phrase
extracted from “Add a repair record in device management
system” will be (add, repair record).

In key phrase filter, Support is introduced to measure the
commonness of key phrases and is defined as follows.

𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑘𝑝 =
ND(kp)

n
 (1)

Where n is the total number of documents, and ND(kp) is
the number of documents which contain key phrase kp. Note
that only common phrases (i.e. the value of Support is not less
than a certain number (θ) between 0 and 1), will be treated as
key phrases.

Input: TypedDependencies tdls generated from Dependency
Analyser.

Output: Candidate phrases.
1. root ← getRootNode(tdls)

2. for each td ∈ tdls do

3. gov ← getGovernor(td)

4. dep ← getDependent(td)

5. reln ← getRelationName(td)

6. if gov == root then

7. if reln == ‘nsubjpass’ or ‘dobj’ then

8. object ← dep

9. end if

10. end if

11. end for

12. MergeNN(tdls，object)

13. return (root，object)

Algorithm 1: Identify Candidate Phrases

Not all key phrases can be identified by using this method,
and not all phrases identified are really indispensable to define
operational patterns. However, it does assist domain experts to
identify key phrases easier.

2) Refine Phrases: Two kinds of generalization, i.e., verb
generalization and entity generalization, are performed to refine
the initial key phrases. The verb generalization merges two or
more different phrases with similar operations into one phrase
by abstracting verbs. And the entity generalization does merge
by abstracting entities. The differences among verbs or entities
are categorized into the variability of OP. Through the two
generalizations, an OP is defined in a more general form, which
can help classify common operations among systems and
increase OP’s reusability in application development.

3) Extract Operational Patterns: OPs are manually extracted
from refined phrases. An OP is generic and regarded as a higher
abstract representation than a phrase. Accordingly we
semantically categorize all the refined phrases with some factors,
such as the entities that a phrase refers to, the complexity of the
operation in a phrase, and the external or internal constraints.
The process of extracting appropriate OPs involves a lot of
discussion with experts from both of the domain engineering and
the specific domain. Each OP is specified with domain terms and
constraints.

4) Build CV Model of OPs: To further analyze all CVs of an
OP, an “Operation-Function” (Oper-Func) matrix is established.
Rows of the matrix represent operations, while columns
represent functions (or requirements) which contain those
operations appeared in rows. The value of a cell is chosen from
“Mandatory”, “Optional” and “Exclude”. If an operation is
“mandatory” for all functions, it is a commonality; otherwise, it
is a variability (with constraints if any). After that, feature model
[20] is used to manage the CVs of each OP. Finally, the metadata
of configuration is defined according to the variability. Table II
shows variants, variation points and configuration metadata of
“Approve Request”. The variation points are identified from
four type of variant. The content surrounded by brace may be
configured for more than once.

TABLE II. AN EXAMPLE OF DEFINING THE METADATA OF

CONFIGURATION

Variant Variation point Metadata of configuration

Basic
Information

Function name Element: functionName

Approval level, approver Attribute: level, role

Data entity Database table Element: requestTableName

Optional
operation

Whether automatic
remind, reminder type

Element: prompt
Attribute: active, type

Query approval records Element: optionalOper
Note: Other metadata is

contained in ”Query Multi-

table Information” OP.

Fields and user
interface

Request form: Title, field,
label name, input widget
type, widget length,
required filling, auto
filling, visible in all of
approval

Element: requestView

Attribute: title, {field,

labelName, widgetType,

length, required, autoFill,

visible}

History record: Title,
field, label name, output
widget type, widget length,
visible

Element: recordView

Attribute: title, {field,

labelName, widgetType,

length, visible}

Approval result: Title, field,
label name, input widget
type, widget length,
required filling, auto
filling, visible in all of
approval

Element: approvalView

Attribute: title, {field,

labelName, widgetType,

length, required, autoFill,

visible}

D. Template-based Code Generation

OPCG is a template-based code generation approach. There
are four common approaches (i.e., abstract syntax trees based,
print statements based, term rewriting and template-based) to
implementing a heterogeneous generator [21]. Particularly, the
template-based approach can be used for generating all kinds of
unstructured text. Additionally, a good template can greatly
improve the efficiency of running code as well as maintenance.

A technical framework of the template-based code
generation is designed, as illustrated in Fig. 2. Specific
requirements on OPs are analyzed from new application
requirements. These requirements will be converted into the
elements and attributes in the XML-based configuration files.
Commonalities of OPs are included in the template files while
variable parts are included in the configuration files, which are
parsed by a configuration parser. Outputs of the parser are taken
to replace placeholders in the template files with actions or
expressions through a template engine. The generated code are
program files in text, such as HTML files and Java files.

Code
Generation Code

Template Files

Configuration
Files

Configuration
Parser

Metadata of

Configuration

Developer

Domain Expert

Requirement

Domain
Component

Library

Choose OPs

Make
Templates

Configure OPs

Fig. 2. Technical Framework of Template-based Code Generation

III. CASE DESIGN AND EXECUTION

Our case study aims to address three Research Questions
(RQs):

RQ1: Is the operational pattern based code generation
approach feasible in management information system
development?

RQ2: Does the OPCG-based software development yield a
higher productivity than traditional software development? How
is its effect on software quality?

RQ3: What is the coverage of the generated code to total
code in new application projects? Is the generated code effective?

A. Case Description

The case study is conducted at CancoSoft for about 2 years,
using some frequently used exploratory case study methods (c.f.
[22], [23]). CancoSoft is a software services provider that
focuses on asset information management systems. In recent
years, due to costly maintenance and repetitive coding effort,
CancoSoft suffers a software development with low efficiency.
In this context, the OPCG approach is proposed and a code
generator named CodeGen is developed. CodeGen has been

applied to the practical software development at CancoSoft for
almost one and a half years.

B. Case Design

The case study is divided into two periods according to our
approach. In the first period, we aim at the domain engineering,
or more specifically, the preparation of reusable software
artifacts, including domain components and templates, as well
as a code generator. In the second period, we apply the OPCG
approach to the software development at CancoSoft and collect
relevant data on development in the meantime. Further analysis
of those data is performed to answer all RQs.

Particularly, in order to answer the RQ2, we refer to the case
design in [23], which aims at evaluating the effectiveness of
model-based software development on the productivity of
enhancement tasks by analyzing statistics on software size, total
effort and rework effort. But our work differs from theirs mainly
in following two aspects: (1) The unit of analysis for our case
study is a project rather than a task. So we need to reconsider the
criteria for calculating software size and total effort, etc. (2)
Different data analysis methods should be used as the statistical
data has changed.

Software size: Given that all projects are developed for Web
applications in our study, we calculate the software size of each
project on two metrics: Lines of Code (LOC) and total number
of Web pages (totPage). The totPage is the sum of total number
of new Web pages and Web pages given by the customer [24].

Maintenance effort (MaintEffort): The maintenance work,
such as correcting faults and improving performance, mainly
concentrates in three months since delivery. Part of maintenance
effort is collected from historic record.

Defect density: The number of defects per KLOC. Those
defects are found during system test and maintenance phase. We
count them according to four severity level, i.e., minor,
moderate, major and critical, corresponding to the coefficient of
0.25, 1, 2 and 3 respectively.

Total effort (Effort): Total effort spent on the project
includes the effort from requirements phase to the maintenance
phase. Total effort and maintenance effort are both measured in
person days.

Code coverage: To obtain the coverage of the generated
skeleton code to total code, we collect data on LOC and totPage
of this code. More code analysis is carried to check the
effectiveness of the skeleton code.

C. Implementation of OPCG

It takes six months to implement OPCG with the effort of
experts and developers. We analyze the domain commonalities
with documents and code collected from 11 legacy systems.
When extracting and refactoring the domain architecture and
components, we emphasize several key activities here as a
supplementary for the activities mentioned in the overall
approach. Domain architecture are modeled in 4+1 views [25],
and refactored by introducing abstraction hierarchies, removing
unnecessary abstractions, breaking dependency cycles [26], and
using Spring Framework2,. When extracting components, we
construct component diagrams to get a clear picture for how

components are wired together and choose reusable components
with appropriate granularity.

Following the process of extracting OPs described in Section
II-C, we successfully extract 14 OPs from SRS documents of 11
legacy systems. 355 key phrases are identified with our
automatic extractor. These key phrases are then refined with
both of verb generalization and entity generalization. E.g., for
verb generalization of “Upload attachment” and “Download
attachment”, which have similar functionalities, they can be
merged into “Manage attachment”. “Query asset information”
and “Query system log” are generalized into ”Query objects”.
Refining produces 15 new phrases, but the total number of
phrases decreases by 274 after that. Through lots of discussion
with three specific domain experts and the domain engineering
expert, 14 OPs are extracted from 96 key phrases. They are
“C.R.U.D.(Create, Retrieve, Update, Delete) single table
information”, “C.R.U.D. multiple table information”, “Approve
request”, “Prompt and alert”, ”Report generation”, “Multi-
dimensional analysis”, “Check inventory” and “Split asset”. We
develop the specification for each OP with constraints and
domain terms, then build feature models for the CVs analyzed
from “Oper-Func” matrixes. Fig. 3 is the feature model of
“Approve request”.

Fig. 3. The Feature Model of an Operational Pattern

CodeGen is a template-based system with a configuration
parser and a code generator. Most code in templates are
developed with experienced developers and optimized for many
times to ensure the generated skeleton code is error-prone. We
implement CodeGen with an open source template engine called
Freemarker, which can generate all kinds of unstructured text
output from templates. In addition to predefined directives,
Freemarker also provides a mechanism for user-defined
directives. We use this mechanism to define metadata in
configuration along with transformational rules in CodeGen.
These rules are included in a configuration parser which parses
the configuration data from XML-based files. The outputs of
CodeGen are primary files to build a web application, such as
HTML files, Java files and Java Server Pages (JSP).

When applying OPCG to new application development,
developers need to analyze new application requirements and
determine specific configurations for the variability of each OP.
Feature models can help developers compose a valid
configuration. The generated skeleton code is not executable and
need to be decorated with more logic code. When requirements
change, new skeleton code is generated and needs to be merged
with the decorated code. Though CodeGen has provided a
service to locate and display the differences between two files,
the merging need to be done by developers manually for its
complexity.

D. Data Collection

We collect data from 5 projects which have similar software
scale. 3 previous projects are developed with object-oriented
development, which is treated as the traditional software
development. After about one week’s CodeGen training for
developers, the tool is applied to the development of two new
but typical Web applications. Data on software size, total effort,
maintenance effort, defects density and code coverage are
collected and then analyzed to find the effectiveness of the
OPCG-based software development and the coverage of
skeleton code to total code. Table III demonstrates the
development information of those projects, where project 4 and
5 are developed with the OPCG approach.

TABLE III. DEVELOPMENT INFORMATION OF PROJECTS

Project
Industry

Sector

Team

Size

Dev.
Effort

(man-day)

totPage

KLOC

Defects
MaintEffort
(man-day)

1 Bank 6 710 138 129.
9

666 50

2 Bank 5 650 120 117.
0

682 52

3 Bank 6 680 129 121.
7

709 56

4 Bank 5 500 119 115.
0

407 38

5 Bank 4 430 111 102.
8

330 35

IV. ANALYSIS AND RESULTS

RQ1. In most of Management Information System (MIS),
there exist lots of repeated operations, such as like C.R.U.D.,
approving request, exporting report, etc. These operations can
be detected as patterns during the requirements phase. We
proposes a systematic approach to extract and reuse OPs in a
explicit way. Additionally, we have implemented our approach
in asset information management domain, and the CodeGen tool
has been successfully applied to develop new applications. The
effort spent on the implementation of our approach was about
600 man-day, which was acceptable for the company and would
be compensated with further usage of CodeGen. These show
that OPCG is feasible in the software development of MIS.

RQ2. The productivity for each project can be calculated by
software size of project to the total effort spent on project [24].
Given that all selected projects have a similar scale on team size
and development period, we divide them into group A, which
consists of 3 previous projects, and group B, which consists of 2
new projects. Fig. 4 illustrates the obvious productivity
difference between two groups on (totPage/Effort) and
(KLOC/Effort) respectively. With the statistical results in Table
III, we can calculate the two percentages of productivity
improvement. One percentage is calculated as (0.25-
0.19)/0.19*100%=31.58% with two means of (totPage/Effort) A

and (totPage/Effort) B. The other is 27.78% with two means of
(KLOC/Effort) A and (KLOC/Effort) B. The maintenance effort
of each project is normalized with the total effort of respective
project, which shown in Fig. 5. The deviation between
(MaintEffort/Effort) A and (MaintEffort/Effort) B is negligible,
which suggest that the OPCG-based development has no
significant effect on the maintenance of new projects. Fig. 6
shows the defect density of five projects. The average density
decreases by 2.2 (Defects/KLOC) after adopting the OPCG
approach.

Fig. 4. Productivity on totPage and KLOC

Fig. 5. Proportion of Maintenance Effort to the Total Effort

Fig. 6. Defect Density (the Number of Defects per KLOC)

RQ3. Table IV shows the statistical data of the skeleton
(Skel.) code and final code in 2 new projects. Comments and
blank lines are exclusive when counting valid code, while all of
them are summed in total code. The two average ratios are 73.13%
on valid code and 73.36% on total code respectively. We find
that the coverage ratio has a negative correlation to the software

size of project. The reason is that the amount of templates is
limited and much more code need to be decorated in a larger
project. In addition, we compare the differences between the
original files generated by CodeGen to the final delivered files.
All original files are kept in the final files, and the average
percentage of useless code (i.e., the code deleted in the final files)
in skeleton code is less than 10%. Comparing to the common
code coverage which ranges from 40% to 90% [28][29], our
code coverage is above average. We preliminarily conclude that
the skeleton code is effective and the average coverage is nearly
70% to the total code.

TABLE IV. STATISTICS OF CODE COVERAGE

Project
(1)Valid

Skel.

Code

(2)Valid
Final

Code

(3)Total
Skel.

Code

(4)Total
Final

Code

Ratio of

(1)/(2)

Ratio of

(3)/(4)

4 61,473 87,416 81,421 115,021 70.32% 70.79%

5 56,964 77,078 78,032 102,770 73.90% 75.93%

V. DISCUSSION

In Section II-C1, we propose a rule-based approach to
extract key phrases from requirement documents automatically.
The approach works well by leveraging the dependency analysis
which is widely used in Natural Language Processing area. Note
that our key phrase extraction algorithm is quite robust in the
projects of asset information management domain, this is mainly
because we use the dependency analysis to have a deep
understanding of sentences. That is to say, even there are many
modifiers before a real object, or the given sentence is in the past
tense, our algorithm can still extract the key phrase accurately.
However, since the approach is rule-based, it is obvious that
many important key phrases could be missed when applying on
a more complex requirements document. It is interesting to
design a bootstrapping algorithm which can learn the key phrase
extraction rules iteratively with only a few seeds. We assign 1 to
the θ for the support in the case study. The reason why we
choose the value is that the operational pattern we want to
extract is a higher abstract representation from phrases. It is
supposed to be generic for all members, with no exception, in a
category of phrases.

There are probably two threats to validity of our experiment:

(1) No two teams with similar experience level can be
assigned to develop the same project with traditional and the
OPCG approaches respectively, due to limited resources. We
believe the above concern is not necessary. Results of our
experiment are relatively fair, as complexity of 3 previous
projects and 2 new projects is nearly the same.

(2) Productivity gain might solely be attributed to the
knowledge and skill improvement of our developers. We believe
the above point is not valid, as we cannot observe productivity
gain in other new projects with traditional approach at
CancoSoft.

Though our approach has been applied for only one domain
since proposed, we believe that it can play a good role in other
operation-intensive domains with well-formatted requirement
documents, such as automobile industry. The NLP techniques
can help experts extract OPs with efficiency and less omissions.
The code generation can reduce the tedious and time-consuming

coding effort on repeated operations among projects. It is even
possible to generate most of program with configurations being
defined by staff with less programming skill.

VI. CONCLUSION AND FUTURE WORK

We present an operational pattern based code generation
approach for small and medium software enterprises in the
development of management information system. Operational
pattern proposed in this paper is actually reusable sequence of
operations in system requirements. NLP techniques are
leveraged in extracting operational patterns, and feature model
is adopted to manage the commonalities and variability of each
operational pattern. Skeleton code can be generated from OPs
through a template-base code generation technique. We also
explain implementation and application of the approach with an
industrial case study in the asset information management
domain. In this study, we analyze the feasibility of our approach
for the software development in the asset information
management domain. Effect of development productivity and
project quality is studied by comparison between 2 new projects
developed with our approach and 3 previous projects with
traditional approach. It shows that the productivity of our
approach is improved by almost 30% compared to the
productivity of traditional software development, with positive
effect on quality. Furthermore, preliminary findings on the code
of new projects suggest that generated code is effective and
around 70% of code can be automatically generated with our
code generation tool.

In essence, to maximize the development productivity and
minimize negative effort on project quality, diverse methods
from NLP, MDD, DSL and SPLE are integrated and tailored in
the OPCG approach.

Future work: More metrics, besides LOC and totPage, might
be needed to measure software productivity, especially when
this approach is applied in other business domains. Feasibility
of our approach should be further verified with more business
domains. In extracting operational patterns, we will design a
bootstrapping algorithm which can handle more complex
requirement documents, and execute two generalizations with
automatic methods. Generating templates from operational
pattern models is a further research area we are interested in.

ACKNOWLEDGMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203), National Natural Science Foundation of
China (Grant No. 61472242), and Key Lab of Information
Network Security, Ministry of Public Security (Grant No.
C14609).

REFERENCES

[1] A. S. Abbas, W. Jeberson, and V. Klinsega, “A literature review and
classification of selected software engineering researches,” International
Journal of Engineering and Technology, vol. 2, no. 7, p. 1, 2012.

[2] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker, “Generative
programming for embedded software: An industrial experience report,”
in Generative Programming and Component Engineering. Springer, 2002,
pp. 156–172.

[3] A. Bozzon, S. Comai, P. Fraternali, and G. T. Carughi, “Conceptual
modeling and code generation for rich internet applications,” in

Proceedings of the 6th international conference on Web engineering.
ACM, 2006, pp. 353–360.

[4] K. Czarnecki and U. W. Eisenecker, “Generative programming,” Edited
by G. Goos, J. Hartmanis, and J. van Leeuwen, p. 15, 2000.

[5] A. MacDonald, D. Russell, and B. Atchison, “Model-driven development
within a legacy system: an industry experience report,” in Software
Engineering Conference, 2005. Proceedings. 2005 Australian. IEEE,
2005, pp. 14–22.

[6] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Professional,
2003.

[7] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[8] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography.” Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000.

[9] M. Fowler, Domain-specific languages. Pearson Education, 2010.

[10] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[11] K. Pohl, G. Bo c̈kle, and F. J. van der Linden, Software product line
engineering: foundations, principles and techniques. Springer Science &
Business Media, 2005.

[12] B. Boehm, R. Madachy, Y. Yang et al., “A software product line life cycle
cost estimation model,” in Empirical Software Engineering, 2004.
ISESE’04. Proceedings. 2004 International Symposium on. IEEE, 2004,
pp. 156–164.

[13] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of the
12th international ACM SIGPLAN symposium on Principles and practice
of declarative programming. ACM, 2010, pp. 13–24.

[14] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification to
program synthesis,” in ACM Sigplan Notices, vol. 45, no. 1. ACM, 2010,
pp. 313–326.

[15] S. Gulwani, “Synthesis from examples: Interaction models and
algorithms,” in Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2012 14th International Symposium on. IEEE,
2012, pp. 8–14.

[16] S. Renault, O ́. Me ńdez Bonilla, J. Franch Gutie ŕrez, M. C. Quer Bosor
et al., “A pattern-based method for building requirements documents in
call-for-tender processes,” 2009.

[17] S. Al-Fedaghi and M. Almutairy, “Toward conceptual representation of
patterns,” in 2015 16th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), 2015, pp. 1–8.

[18] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software, vol. 74,
no. 2, pp. 173–194, 2005.

[19] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” URL http://nlp.stanford.edu/software/dependencies manual.pdf,
2008.

[20] D. Beuche, H. Papajewski, and W. Schro d̈er-Preikschat, “Variability
management with feature models,” Science of Computer Programming,
vol. 53, no. 3, pp. 333–352, 2004.

[21] J. Arnoldus, M. Van den Brand, A. Serebrenik, and J. J. Brunekreef, Code
generation with templates. Springer Science & Business Media, 2012, vol.
1.

[22] P. Runeson and M. Ho¨st, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[23] D. Kamma and S. K. G, “Effect of model based software development on
productivity of enhancement tasks - an industrial study,” in 21st Asia-
Pacific Software Engineering Conference, APSEC 2014, Jeju, South
Korea, December 1-4, 2014. Volume 1: Research Papers, 2014, pp. 71–
77. [Online]. Available: http://dx.doi.org/10.1109/APSEC.2014.20

[24] B. Kitchenham and E. Mendes, “Software productivity measurement
using multiple size measures,” Software Engineering, IEEE Transactions
on, vol. 30, no. 12, pp. 1023–1035, 2004.

[25] P. B. Kruchten, “The 4+ 1 view model of architecture,” Software, IEEE,
vol. 12, no. 6, pp. 42–50, 1995.

[26] M. Stal, “Software architecture refactoring,” in Tutorial, in The
International Conference on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2007.

[27] P. Mohagheghi and V. Dehlen, “Where is the proof? - a review of
experiences from applying mde in industry.” Lecture Notes in Computer
Science, vol. 5095, pp. 432–443, 2008.

[28] MODELWARE D5.3-2 Enabler ROI, Assessment, and Feedback.
Revision 1.1 (2006), http://www.modelware-ist.org

[29] D. Lucredio, E. S. D. Almeida, and R. P. M. Fortes, “An investigation on
the impact of mde on software reuse,” in Proceedings of the 2012 Sixth
Brazilian Symposium on Software Components, Architectures and Reuse,
2012, pp. 101–110.

