
Mining GitHub: Why Commit Stops
Exploring the Relationship between Developer’s Commit Pattern and File Version Evolution

Yang Weicheng, Shen Beijun, Xu Ben
School of Software Engineering
Shanghai Jiao Tong University

Shanghai, China
maxi900201@gmail.com, bjshen@sjtu.edu.cn

Abstract—Using the freeware in GitHub, we are often confused
by a phenomenon: the new version of GitHub freeware usually
was released in an indefinite frequency; and developers often
committed nothing for a long time. This evolution phenomenon
interferes with our own development plan and architecture
design. Why do these updates happen at that time? Can we
predict GitHub software version evolution by developers’
activities? This paper aims to explore the developer commit
patterns in GitHub, and try to mine the relationship between
these patterns (if exists) and code evolution. First, we define
four metrics to measure commit activity and code evolution:
the changes in each commit; the time between two commits;
the author of each changes; and the source code dependency.
Then, we adopt visualization techniques to explore developers’
commit activity and code evolution. Visual techniques are used
to describe the progress of the given project and the authors’
contributions. To analyze the commit logs in GitHub software
repository automatically, Commits Analysis Tool (CAT) is
designed and implemented. Finally, eight open source projects
in GitHub are analyzed using CAT, and we find that: 1) the file
changes in the previous versions may affect the file depend on
it in the next version; 2) the average days around “huge
commit” is 3 times of that around normal commit. Using these
two patterns and developer’s commit model, we can predict
when his next commit comes and which file may be changed in
that commit. Such information is valuable for project planning
of both GitHub projects and other projects which use GitHub
freeware to develop software.

Keywords-repository mining; GitHub; commit pattern;
version evolution; visualization technology

I. INTRODUCTION AND MOTIVATION
GitHub is a relatively new project hosting site, which,

due to its developer-friendly features, has enjoyed
widespread acclaim and adoption. It provides freeware for
study, research and other uses. In our lab, we usually use
these freeware to develop our own software.

However, during the development process, our plan and
design are often interfered by sudden updates of files and
APIs. New version of freeware usually is released in an
indefinite frequency; and developers often do not commit
anything for a long time. This is a common phenomenon in
GitHub, and therefore we have to change our plan and design
frequently to adapt the changes from the freeware.

To find the root cause of this phenomenon, this paper
aims at exploring the relation between developer commit
patterns and file version evolution by the following three
research questions:

RQ1. How do the changes affect the other source
files?

When the code changes in the previous version, which
source files will be modified in the following versions? The
influence of the changes will help to locate the source files
which need to be updated in the following versions, and to
describe the reason of these updates.

RQ2. What are the developers’ commit habits look
like?

In GitHub, developer’s behavior consist of commit
activities and interval between two commits. The
developer’s commit habit, a pattern that can model the
developer’s behavior, will show the frequency of the commit
activities and the change scales via the time line. Different
developers may have different habits. Can there special
patterns describe the core developers’ commit habits?

RQ3. What’s the relationship between core
developers’ commit habits and the file version evolution?

The core developer dominates the software development.
In the file version evolution, what are the effects of the core
developers’ behaviors? The relationship between core
developers’ commit habits and the file version evolution will
describe when the new version will come and which files
will be changed.

The rest of the paper is organized as following. Section II
proposes four metrics to explore the developer’s commit
habit and the file version evolution. Section III describes the
design of a software repository mining tool which calculates
and visualizes the four metrics using class dependency
graphs and barcodes. Section IV conducts case studies.
Finally, Section V concludes the paper and outlines future
work.

II. MEASURES
According to the three research questions, we design four

metrics to measure commit activity and software evolution.

A. Changes in each commit
Changes in each commit describe the change scale

evolution of the software. To measure the changes, the
concept “sub-version” is introduced. One software version is

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.133

165

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.133

165

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.133

165

divided into several sub-versions, and each sub-version
consists of several revisions. The introduction of sub-version
will reduce the workload of code changes calculating
without sacrificing the confidence of the result.

The classis and simple measure of changes in line of
code (LOC) modified. In our study, we divide changes into
two types, “add” and “delete”, to build the code change
metrics. So in one sub-version, each source file has two
values, added LOC and deleted LOC. These changed lines
can be extracted from the log entries.

B. Interval between two commits
Interval between two commits describe the change

frequency of the software. In order to measure the interval,
we need to extract the time strings from the commit log
entries.

We define three interval values: interval between current
commit and the latest previous commit, interval between
current commit and the latest previous “huge commit” and
interval between current commit and the latest previous
milestone.

C. Author of each changes
The authors of each changes help analyze the developers’

commit pattern. In one commit, there is only one author, but
in the sub-version, there are more than one developer. These
developers are divided into groups, and then additional
information is used to measure the features of these groups.

D. Source code dependency
Source code dependency describes the structure of the

whole project in the given period of time. The dependency
can be described by two parts: static source code dependency
and dynamic code change dependency.

There are many ways to measure the static source code
dependency, including static source code analysis and
dynamic program analysis. Function call metrics are chosen
as the key of static source code analysis in order to build a
dependent sequence. For example, assume that file A has
function f1, and file B has function f2. A function call from
f1 to f2 indicates a dependency from A to B (A->B).

The second part, dynamic code change dependency, will
be built from the commit logs. The basic idea of dynamic
code change dependency is that, changes in file B is caused
by changes in file A, then file B depends on file A. But in
GitHub, the commits are often discontinues. Using sub-
version instead of revision will help find out the potential
relationship between two changes.

Using these metrics, barcode visualization is adopt to
explore the developers’ commit habits. The barcode consists
of several vertical parallel line segments of equal length.
These segments are sequentially arranged from left to right
in accordance with time. The width of a line segment
represents one or more commits on a certain day from one
developer, and the change scales of these commits. The gaps
between two line segments are the periods with no commits.

We have already defined the inert period in [1] as the
maximum gap of developer’s commit history. In this study,
we use the distribution of the inert periods and the commits

in the barcode visualization to describe the developers’
commit habits. We visualize every developer’s commit
history on each package as a barcode graph, and also divide
developers into core members and peripheral members to see
the different distribution styles.

III. TOOL DESIGN
To analyze the software development data in GitHub

automatically, we develop a tool named Commits Analysis
Tool (CAT). It contains four main modules: dependent
sequence generation module, data simplification module,
dependency directed graph visualization module and barcode
generation module. Each module will be described in the
following sub-sections.

A. Dependent sequence generation
ArgoUML, an object oriented reverse engineering tool, is

used to generate the static source code dependent sequence
from the given sub-version source code. However, some
relationships between source files are missing, so
PowerDesigner, another UML modeling tool, is used to
make a complement to one xml file that describes the
dependent sequence like Fig.1.

Figure 1. Simplified commit detail modifications

 ��� � �� ��		
��

� �� �		

�

 (1)

In the dynamic code change dependency analysis, there
are two dependency value of each two files, Vxy and Vyx. The
two values may not be the same, which means if file B
depends on file A at value 1.0, then file A may depend on
file B at value 0.1. The higher the value, the more change
effects.

Formula 1 gives the basic calculation process. �, � are the
proportion variables. Tlcc is the co-change times of file x and
file y in the latest sub-versions. Tlt is the total change times
of file y in the latest sub-versions. Tcc is the co-change times

<UML:Class xmi.id = '-64--88-68-1-
66f6e0a6:13a812327e2:-8000:00000000000ED3B2'
name = 'Boolean' visibility = 'public' isSpecification =
'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'
isActive = 'false'>
<UML:ModelElement.taggedValue>
<UML:TaggedValue xmi.id = '-64--88-68-1-
66f6e0a6:13a812327e2:-8000:00000000000ED3B3'
isSpecification = 'false'>
<UML:TaggedValue.dataValue>yes</UML:TaggedValu
e.dataValue>
<UML:TaggedValue.type>
<UML:TagDefinition xmi.idref = '-64--88-68-1-
66f6e0a6:13a812327e2:-8000:00000000000E7488'/>
</UML:TaggedValue.type>
</UML:TaggedValue>
</UML:ModelElement.taggedValue>
</UML:Class>

166166166

of file x and file y in the whole version history. Tt is the total
change time of file y in the whole version history.

Figure 2. Simplified commit detail modifications

B. Data simplification
The data simplification module takes one commit entry

as input, and outputs a simplified line change number. The
sample result is shown in Fig.2, where the file path and
change scale are output as the key information to describe
this given commit entry.

C. Dependency directed graph visualization
Combining with dependent sequence data and code

changes, this module uses JUNG to visualize the dependency
directed graph.

Fig.3 gives an example of the dependency diagram with
added lines from backtracked commit 300 to 350 of
CraftBukkit project in GitHub. The commit number is
reversed from the latest commit to the first one.

To make the layout of this diagram stable, we choose a
suitable layout for the last sub-version, and make it the
layout template for all the other sub-versions. So in further
study, we can make an animation to visualize the evolution
of the source code with dependent sequence.

Figure 3. Class dependency diagram with commit information

D. Barcode generation
This module uses parallel line segments to represent a

group of commits, and the gaps between two line segments
to represent the periods with no commits. The width of each
line is considered as:

���� � �� � ������� � �� � ����� � �� � ��� (2)

�, �, � are the variables to decide proportion of commit
count, change files and change lines in the visualization. The
width of each gap is considered as:

���� � �� � !"� � �# � �������� (3)

�, # are the variables which decide the proportion of the
days between two commits and commits from other
developers in that period in the visualization [5].

Figure 4. Sample Barcode with commits information

According to the above definitions, this module adopts
Scalable Vector Graphics (SVG), an XML-based vector
image format for graphics, to visualize barcode, as shown in
Fig.4.

IV. CASE STUDY
After the implementation of CAT, we do some case

studies to apply the proposed mining method to find
developers’ behavior patterns.

A. Data
We collect data from GitHub and export detail commit

logs using the git command. Fig.5 gives a sample commit
log entry. In each commit log entry, there is a cryptographic
hash uniquely identification, a developer name, an email
address, the commit time and comments, and change details.

Change information can be divided into several parts: the
file path, the added and deleted lines of the code with “-” or
“+” marks in front of it.

Figure 5. Sample commit log entry from project CraftBukkit

commit 05a3daf39c98a187d86754fac850bf948e11098e
Author: feildmaster <admin@feildmaster.com>
Date: Fri Jul 13 22:57:42 2012 -0500

 Add missing setLastDamageCause. Thanks MonsieurApple

diff --git a/src/main/java/net/minecraft/server/EntityLiving.java
b/src/main/java/net/minecraft/server/EntityLiving.java
index bebac89..cf71f17 100644
--- a/src/main/java/net/minecraft/server/EntityLiving.java
+++ b/src/main/java/net/minecraft/server/EntityLiving.java
@@ -860,7 +860,7 @@
public abstract class EntityLiving extends Entity {
 } else {
 this.world.makeSound(this, "damage.fallsmall",
1.0F, 1.0F);
 }
-
+ this.getBukkitEntity().setLastDamageCause(event);
 this.damageEntity(DamageSource.FALL, i);
 }
 // CraftBukkit end

diff --git
a/src/main/java/org/bukkit/craftbukkit/CraftWorld.java
b/src/main/java/org/bukkit/craftbukkit/CraftWorld.java
@@ -1 +1 @@

167167167

Eight projects from the GitHub are chosen as data-set in
the following studies. Some basic metrics of the data-set are
given in Table 1, where “Last(Days)” describes the days
between the first commit and the last one.

Due to the length limit, this paper takes example of
CraftBukkit project to illustrate the experimental results and
discussions. CraftBukkit is an implementation of the
Minecraft Server Mod developed using Java language. It’s a
relatively young project since December 2010. We collected
its commits and the developer information from December
2010 to July 2012.

TABLE I. DATA-SET METRICS

Project Developers Commits KLOC Last(Days)
cassandra 35 7790 224.8 1340

clojure 101 2359 53.4 2405
CraftBukkit 100 1807 60.1 570

git 1171 30614 181.2 2754
jquery 186 4694 35.6 2416
rails 2027 33628 223.6 2899

sparkle 54 727 92.8 1892
voldemort 77 2387 171.2 4322

B. Results and discussion
1) RQ1. How do the changes affect the other souce files?

To show the influence of the code changes, we measure
the CraftBukkit, and choose 50 sequent commits as a sub-
version to build the dependency directed graph. According to
the previous studies [2, 3], “expert”, the core developer of a
source file cluster in a period of time, can be found in
package level. We choose the package as the file cluster, and
generate the graph for each cluster in every sub-version.

Figure 6. Code changes on package org.bukkit.craftbukkit.entity

Fig.6 shows that in commits 250-300, there are several
changes in most files. However some “core” files, which are
represented by the vertexes with high degrees in this graph,
are changed more frequently. The color depth, which present
the change scale of each file, shows that the change scales

are lower than 5% of most files. But in commits 300-350 of
this package, the change scale increased. Many files changed
in this sub-version especially those files with direct
relationship with the files that have been changed in previous
sub-version. This phenomenon shows that, small changes in
previous commit, especially those changes occurred in
“core” files, will cause large code changes in the following
commits.

Besides CraftBukkit project, this phenomenon can be
found in all other seven projects. The influence of the code
changes can be well described by the dependency directed
graph. The edges in graph that connected to the changed
vertexes will help us to identify the future changes of the
source files.

2) RQ2. What are the developers’ commit habits look
like?

Barcode is chosen to visualize the developers’ commit
habits. For each package, a barcode is generated for each
developer that has ever made a commit on it.

Figure 7. Barcode of package org.bukkit.craftbukkit.entity

Fig.7 shows the barcodes of developers on package
org.bukkit.craftbukkit.entity. It is clear that Dinner Bone,
who can be figured out as the “expert” of this package,
commits the most parts of the code. But Tahgtahv and other
developers that are not shown in this figure can be
considered as the related developers, they contribute few
parts of this package.

If in one commit, there are more than five changed files;
and in each changed file, there are more than five changed
lines, we call this commit as “huge commit”. We calculate
the average gap length between the huge commits, and find
out the following pattern:

The average gap length between huge commits is 3 times
of normal commits.

TABLE II. AVERAGE INTERVAL RESULT

 Avg interval around
huge commit

Average Interval around
normal commit

cassandra 5.592 1.720
clojure 6.189 2.039

CraftBukkit 6.317 1.895
git 5.582 1.796

jquery 5.336 2.059
rails 4.543 1.893

sparkle 4.562 2.606
voldemort 4.579 1.524

As the average gap length between huge commits is 5.34
days, and the normal commit is 1.94 days. In this calculation,
we filter out those gaps larger than 10 days. We consider that
the commits with 10 days apart are not in a series and these
gaps can be noise data for further study [4].

168168168

However, for those developers who commit a little of this
package, their commit patterns do not comply with the
pattern so well.

3) RQ3. What’s the relationship between core
developers’ commit habits and the file version evolution?

The developers’ commit habits tell us a common
phenomenon that people need rest, thinking or other
preparation to start a series of jobs, or after finishing a series
of jobs. The developer will have to do some testing or
summary, design for the next part, and take a rest or other
kinds of breaks. But in one series of jobs, made up of many
commits in sequence over continues time, the developers
will have to focus on their jobs, and commit what they have
done just in time. Because of the continuity of tasks, the
developer does not have to take too long to start a new task
after finishing the previous one.

In the iterative development process, developers should
make plans at the start of each iteration, and do validation at
the end of the iteration. Now we reduce the scale of
iterations, and regard one series of jobs as an iteration. The
developers’ commit habits in one sequence tasks can be
expanded to a large scale of tasks, and the commit patterns
give us a persuasive proof of the rightness of small iterations
in software development. The dependency directed graph of
each package over sub-versions shows that the change scale
is different in each sub-version. Combining with the
developers’ commit data, especially the core developer’s
commit data, we can find the core developer’s leading effect
clearly in the graph from version to version.

V. CONCLUSION AND FURTHER WORK
In this paper, we explore the developer’s commit habits

and their relationship with file version evolution using
dependency directed graphs and barcodes, in order to find
out the root cause of the indefinite software release
frequency in GitHub.

To describe the commit habit and file version evolution,
four metrics are proposed, namely the changes in each
commit, the interval between two commits, the author of
each changes, and the source code dependency. Then, we
develop a software repository mining tool CAT to generate
the metrics, and visualize the results using class dependency
graphs and barcodes. Finally, through the case study of eight
projects from GitHub, we reveal the following patterns: 1)
the later changes can be mostly associated with the previous
changes according to the edges in dependency direct graphs;
2) the developers’ commits can be grouped into several
series and the average gap between huge commits is much
longer than other commits.

For the developers in GitHub, knowing the habits of
other developers in the group is helpful to make a better
work plan and do the important commit at the right time. For
the user of the freeware in GitHub, knowing when to release
the next version of the freeware will help to make some
adjustments early. And for the competitors of the product in
GitHub, knowing the software release cycle will help to
make a better development plan of their own.

This study is not the first to explore the relationship
between the developer’s activity and the file version
evolution. Richard Wettel and Michele Lanza [6, 7]
presented a 3D software visualization approach based on a
city metaphor and investigated several factors that concur to
the realistic aspect of the city. Peter Weißgerber et al [8]
used three visualization techniques to help examine the
development behavior of the programmers and the
partitioning of the task between them in detail, and
recognized when particular developers have been especially
active and which developers have worked together or alone
on which files. The bulk of the work on the repository
mining is working on the cooperation of developers or the
evolution of project structure. However these researches did
not concern about the relationship between developer’s
activity and file evolution. This study aims at exploring this
relationship, and finally revealing two patterns that can give
a sight of the developer’s commit habits and the effects to
file version evolution.

Moreover, there are still some valuable questions for
further studies. Are there any qualities issues that stop the
developer’s work or do they have to wait for the completion
of dependent part? Has the software’s quality be affected
when the developer make a huge commit? In the near future,
we plan to dig the source code, study the comments in each
commit and add in some issue tracker to expand our
repository, achieve a better understanding of developer’s
commit habit and try to find out the relationship between the
developers’ habits and software quality.

REFERENCES
[1] Xu Ben, Shen Beijun, Yang Weicheng, “Mining Developer

Contribution in Open Source Software Using Visualization
Techniques”. ISDEA, 2013, pp. 934-937.

[2] Omar Alonso, Premkumar T. Devanbu, Michael Gertz, “Expertise
Identification and Visualization from CVS”, In MSR’08: The 5th
Working Conference on Mining Software Repositories, pp. 125-128.
ACM, 2008.

[3] David Schuler, Thomas Zimmermann, “Mining Usage Expertise from
Version Archives”, In MSR’08: The 5th Working Conference on
Mining Software Repositories, pp. 121-124. ACM, 2008.

[4] Harvey Siy, Parvathi Chundi, Mahadevan Subramaniam,
“Summarizing Developer Work History Using Time Series
Segmentation”, In MSR’08: The 5th Working Conference on Mining
Software Repositories, pp. 137-140. ACM, 2008.

[5] Jason R. Casebolt, Jonathan L. Krein, Alexander C. Maclean, Charles
D. Knutson, “Author Entropy vs. File Size in the GNOME suit of
Applications”, In MSR’08: The 5th Working Conference on Mining
Software Repositories, pp. 91-94. IEEE, 2008.

[6] Richard Wettel, Michele Lanza, “Visualizing Software Systems as
Cities”, In Proceeding of VISSOFT 2007: 4th IEEE International
Workshop on Visualizing Software For Understanding and Analysis,
pp. 92-99. IEEE, 2007.

[7] Richard Wettel, Michele Lanza, “Visual Exploration of Large-Scale
System Evolution”, In WCRE’15: 2008 15th Working Conference on
Reverse Engineering, pp. 219-228. IEEE, 2008.

[8] Peter Weißgerber, Mathias Pohl, Michael Burch, “Visual Data
Mining in Software Archives To Detect How Developers Work
Together”, In MSR’07: The 4th Working Conference on Mining
Software Repositories, pp. 9-16. IEEE, 2007.

169169169

