
EXPSOL: Recommending Online Threads for
Exception-related Bug Reports

Xiaoning Liu, Beijun Shen, Hao Zhong, Jiangang Zhu
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

{donlxn, bjshen, zhonghao, jszjgtws}@sjtu.edu.cn

Abstract—An exception-related bug is a kind of program
bug which causes exceptions. During software maintenance,
when programmers repair exception-related bugs, they typically
analyze thrown exceptions to understand the root causes of
such bugs. When encountering unfamiliar thrown exceptions,
programmers often refer to online forum threads (e.g. Stack-
Overflow) to understand how to fix them. Although some general
search engines are available and some research tools are pro-
posed, they are insufficient to recommend threads for exception-
related bugs from large-scale online resources. In this paper,
we propose an approach, named EXPSOL, which recommends
online threads as solutions for a newly reported exception-
related bug with a model trained by support vector machines.
We conduct two evaluations on thousands of threads from
StackOverflow and fixed issues from GitHub. The results of our
first evaluation show the significance of our internal features and
highlight the importance of integrating different features. The
results of our second evaluation show that, EXPSOL performs
better in mean average precision, mean reciprocal rank and recall
than those of the Google search engine, the internal search engine
of StackOverflow, and other existing approaches.

Keywords—Recommendation, Exception-related Bug, Stack-
Overflow, GitHub.

I. INTRODUCTION

An exception is an abnormal event which occurs during the
routine execution of a program, and a thrown exception often
indicates a bug to be fixed [17]. Most modern programming
languages (e.g., Java and C#) implement exception handling
mechanisms [5]. As thrown exceptions often indicate bugs,
during software maintenance, many exception-related bugs are
reported through issue trackers (e.g., GitHub1), and it can take
much effort to fix such reported bugs [26]. When programmers
encounter reported bug that is related to an unfamiliar excep-
tion, they often search online forums (e.g., StackOverflow2) to
understand such bugs. Although bug reports and forum threads
seem to be irrelevant, we find many connections between
them. For example, we find that many bug reports have URLs
to forum threads, and Section II presents such an example.
The connections show the usefulness of forum threads, when
programmers fix exception-related bugs. Furthermore, it can
be feasible to train a model from known connections, and
such a model can recommend threads for a newly reported
exception-related bug. The recommendation can benefit the
repair process of exception-related bugs.

1http://www.github.com
2http://stackoverflow.com

Although returned online threads can be beneficial, it is
often challenging to find useful ones, since there are quite
an amount of online threads. In literature, researchers [11],
[18], [22] proposed approaches that recommend online re-
source to assist programming tasks, but these approaches are
designed for other purposes than recommending online threads
to exception-related bug reports. Rahman et al. [24] integrate
StackOverflow with Eclipse, and recommend threads when
the current code throws errors or exceptions. However, their
approach cannot recommend proper threads for bug reports,
since bug reports have quite different contents from the error
messages from Eclipse.

Indeed, bug reports have specific structures which require
more advanced analysis. For example, in a bug report, a
thrown exception may have inheritance relationships with
other exceptions or classes. Although such details are useful to
locate online threads, to the best of our knowledge, previous
approaches do not fully use such information.

After analyzing thousands of bug reports and forum threads,
we identify three challenges in recommending online threads
for exception-related bugs: (1) as forum threads and bug
reports are written in the mixed format of natural languages,
code samples, and stack traces, it is challenging to determine
proper features for the recommendation; (2) as forum threads
and bug reports are extracted from two different sources, it
is challenging to make the connection between threads and
reported bugs; and (3) it is challenging to recommend proper
online threads for a newly exception-related bug report, since
there are millions of online threads.

In this paper, we propose an exception-related bug solution
recommender, EXPSOL, and identify three types of potentially
useful features. Based on the features, we train a model that is
based on support vector machines. Our trained model captures
the similarity between bugs and corresponding useful forum
threads, and thus is able to recommend useful threads for a
newly reported bug. To show the effectiveness of our approach,
we select GitHub and StackOverflow as our subjects in our
evaluation, since they are popular and widely used as research
subjects in existing studies [2], [6], [13], [27]. This paper
makes these major contributions:

• An identity linkage algorithm for exception-related re-
sources by leveraging structured exception messages and
relationships. Based on the algorithm, an exception tree
is constructed to link GitHub issues with threads from
StackOverflow.

• A novel approach, called EXPSOL, which combines three
kinds of features with a semi-supervised learning model
to recommend online threads to reported exception-
related bugs.

• An evaluation on thousands of bug reports and forum
threads from GitHub and StackOverflow. Our evaluation
shows that EXPSOL achieves better results than three
compared approaches.

The rest of this paper is organized as follows. Section II
presents a motivating example. Section III describes our ap-
proach. Section IV performs evaluations. Section V discusses
the validity of our work. We review the related work in
Section VI and summarize this paper in Section VII.

II. MOTIVATING EXAMPLE

Suppose that a programmer named Mary, encounters a
reported bug that relates to JsonMappingException. The
bug throws the stack trace as follow:
com.fasterxml.jackson.databind.JsonMappingException: ...

at ...StringSerializer.serialize(StringSerializer.java:49)

at ...MapSerializer.serializeFieldsUsing(...)

...

The following code sample triggers the exception:
public void testStringArrayInMap() throws Exception{

Properties map = new Properties();

map.put("names", new String[]"david", "filip", "ivan");

System.out.println(MAPPER.writeValueAsString(map));

}

The reporter of the bug presents the following description:
There is possible bug introduced in tags/jackson-databind-2.6.0: I tested this on Ubuntu

Linux and Windows 7 with java 8; Simple workaround for this problem is to use

java.util.HashMap instead of java.util.Properties.

If Mary is unfamiliar with the thrown exception, she may
search for online threads to understand its causes and how to
fix the thrown exception. In particular, she can break the full
name of the exception into several keywords then search them
with Google.

When other programmers have different opinions in fixing
an exception-related bug, they can also refer to threads on
online forums. For example, Figure 1(a) shows a fixed bug3 in
Github. The bug throws the same exception as the above newly
reported bug. When programmers discussed how to fix the
bug, as shown in Figure 1(b), a programmer, called JacksonTi,
pointed out the cause of the exception, and referred to a thread4

on StackOverflow. Figure 1(c) shows the thread. The answers
to the thread in Figure 1(d) say that the exception may be
caused by incorrect type conversions. If Mary knows the link,
she can fix the newly reported bug more effectively.

However, such links are hidden. Existing search engines are
insufficient to discover such links, since they typically use only
the lexical similarity between selected keywords and online
threads. Even if such links are discovered, it is challenging
to recommend threads for a newly reported bug, based on
such links. Oftentimes, Mary has to manually identify useful

3https://github.com/FasterXML/jackson-databind/issues/1174
4https://stackoverflow.com/questions/21988512

101 869 395 Watch Star Fork FasterXML / jackson-databind

 Code Issues 173 Pull requests 8 Wiki Pulse Graphs

Labels

Milestone

No milestone

Assignee

No one assigned

3 participants

com.fasterxml.jackson.databind.JsonMappingException:
[Ljava.lang.String; cannot be cast to java.lang.String (through
reference chain: java.util.Properties["names"]) #1174

 Closed ljubad opened this issue 10 days ago · 2 comments

New issue

None yet

ljubad commented 10 days ago

There is possible bug introduced in tags/jackson-databind-2.6.0:

­­­
 T E S T S
­­­
Running com.fasterxml.jackson.databind.ser.TestArraySerialization
Tests run: 8, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.365 sec <<< FAILURE! ­ in com.fas
testStringArrayInMap(com.fasterxml.jackson.databind.ser.TestArraySerialization) Time elapsed: 0.01
com.fasterxml.jackson.databind.JsonMappingException: [Ljava.lang.String; cannot be cast to java.lan
 at com.fasterxml.jackson.databind.ser.std.StringSerializer.serialize(StringSerializer.java:49)
 at com.fasterxml.jackson.databind.ser.std.MapSerializer.serializeFieldsUsing(MapSerializer.java
 at com.fasterxml.jackson.databind.ser.std.MapSerializer.serialize(MapSerializer.java:467)
 at com.fasterxml.jackson.databind.ser.std.MapSerializer.serialize(MapSerializer.java:29)
 at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerialize
 at com.fasterxml.jackson.databind.ObjectMapper._configAndWriteValue(ObjectMapper.java:3525)
 at com.fasterxml.jackson.databind.ObjectMapper.writeValueAsString(ObjectMapper.java:2915)
 at com.fasterxml.jackson.databind.ser.TestArraySerialization.testStringArrayInMap(TestArraySeri

In tags/jackson-databind-2.5.5 serialization works correctly and result example is:

Running com.fasterxml.jackson.databind.ser.TestArraySerialization {"names":

["david","filip","ivan"]}

Here is custom testing code that proves this possible bug:

public void testStringArrayInMap() throws Exception
 {

 Properties map = new Properties();
 map.put("names", new String[]{"david", "filip", "ivan"});
 System.out.println(MAPPER.writeValueAsString(map));

 }

I tested this on Ubuntu Linux and Windows 7 with java 8

Simple workaround for this problem is to use java.util.HashMap instead of java.util.Properties.

FasterXML, LLC membercowtowncoder commented 10 days ago

This is a bug in usage: both keys and values of Properties should be String s, and not other value types.

ю 1

cowtowncoder closed this 10 days ago

JacksonTi commented 6 hours ago

You made a mistake by trying to use java.util.Properties as String.
There is a similar question in Stackoverflow.
https://stackoverflow.com/questions/21988512/jackson-deserialization-exception-when-trying-to-serialize

Personal Open source Business Explore Pricing Blog Support This repository Search Sign upSign in

(a) A fixed exception-related bug (FasterXML1174) in the GitHub

101 869 395 Watch Star Fork FasterXML / jackson-databind

 Code Issues 173 Pull requests 8 Wiki Pulse Graphs

Labels

Milestone

No milestone

Assignee

No one assigned

3 participants

com.fasterxml.jackson.databind.JsonMappingException:
[Ljava.lang.String; cannot be cast to java.lang.String (through
reference chain: java.util.Properties["names"]) #1174

 Closed ljubad opened this issue 10 days ago · 2 comments

New issue

None yet

ljubad commented 10 days ago

There is possible bug introduced in tags/jackson-databind-2.6.0:

­­­
 T E S T S
­­­
Running com.fasterxml.jackson.databind.ser.TestArraySerialization
Tests run: 8, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.365 sec <<< FAILURE! ­ in com.fas
testStringArrayInMap(com.fasterxml.jackson.databind.ser.TestArraySerialization) Time elapsed: 0.01
com.fasterxml.jackson.databind.JsonMappingException: [Ljava.lang.String; cannot be cast to java.lan
 at com.fasterxml.jackson.databind.ser.std.StringSerializer.serialize(StringSerializer.java:49)
 at com.fasterxml.jackson.databind.ser.std.MapSerializer.serializeFieldsUsing(MapSerializer.java
 at com.fasterxml.jackson.databind.ser.std.MapSerializer.serialize(MapSerializer.java:467)
 at com.fasterxml.jackson.databind.ser.std.MapSerializer.serialize(MapSerializer.java:29)
 at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerialize
 at com.fasterxml.jackson.databind.ObjectMapper._configAndWriteValue(ObjectMapper.java:3525)
 at com.fasterxml.jackson.databind.ObjectMapper.writeValueAsString(ObjectMapper.java:2915)
 at com.fasterxml.jackson.databind.ser.TestArraySerialization.testStringArrayInMap(TestArraySeri

In tags/jackson-databind-2.5.5 serialization works correctly and result example is:

Running com.fasterxml.jackson.databind.ser.TestArraySerialization {"names":

["david","filip","ivan"]}

Here is custom testing code that proves this possible bug:

public void testStringArrayInMap() throws Exception
 {

 Properties map = new Properties();
 map.put("names", new String[]{"david", "filip", "ivan"});
 System.out.println(MAPPER.writeValueAsString(map));

 }

I tested this on Ubuntu Linux and Windows 7 with java 8

Simple workaround for this problem is to use java.util.HashMap instead of java.util.Properties.

FasterXML, LLC membercowtowncoder commented 10 days ago

This is a bug in usage: both keys and values of Properties should be String s, and not other value types.

ю 1

cowtowncoder closed this 10 days ago

JacksonTi commented 6 hours ago

You made a mistake by trying to use java.util.Properties as String.
There is a similar question in Stackoverflow.
https://stackoverflow.com/questions/21988512/jackson-deserialization-exception-when-trying-to-serialize

Personal Open source Business Explore Pricing Blog Support This repository Search Sign upSign in

(b) A URL in the discussion of FasterXML1174

sign up log in tour help

_Stack Overflow is a community of 4.7
million programmers, just like you,
helping each other.

Join them; it only takes a minute:

Sign up

Join the Stack Overflow community to:

Ask
programming

questions

Answer and help
your peers

Get recognized for your
expertise

Jackson DEserialization exception when trying to serialize

I can't figure why when trying to serialize an object I get an exception which looks related to deserialization. My object has a field which is of
joda type LocalDateTime

....

ObjectMapper mapper = new ObjectMapper();
mapper.writeValueAsString(response));

I got the following exception:

org.codehaus.jackson.map.JsonMappingException: java.lang.String cannot be cast to org.joda.time.LocalDateTime

I am trying to serialize. Why it is trying to convert String value to object? I tried to add custom deserializers, but it does not work.

 More of the exception:update

org.codehaus.jackson.map.JsonMappingException: java.lang.String cannot be cast to org.joda.time.LocalDateTime (through reference chain:
com.my.AccountDetailResponse["registrationDate"]) at org.codehaus.jackson.map.JsonMappingException.wrapWithPath
(JsonMappingException.java:218) ~[jackson-mapper-asl-1.9.13.jar:1.9.13] at
org.codehaus.jackson.map.JsonMappingException.wrapWithPath(JsonMappingException.java:183) ~[jackson-mapper-asl-1.9.13.jar:1.9.13] at
org.codehaus.jackson.map.ser.std.SerializerBase.wrapAndThrow(SerializerBase.java:140) ~[jackson-mapper-asl-1.9.13.jar:1.9.13] at
org.codehaus.jackson.map.ser.std.BeanSerializerBase.serializeFields(BeanSerializerBase.java:158) ~[jackson-mapper-asl-1.9.13.jar:1.9.13]
at org.codehaus.jackson.map.ser.BeanSerializer.serialize(BeanSerializer.java:112) ~[jackson-mapper-asl-1.9.13.jar:1.9.13] at
org.codehaus.jackson.map.ser.StdSerializerProvider._serializeValue(StdSerializerProvider.java:610) ~[jackson-mapper-asl-1.9.13.jar:1.9.13]
at org.codehaus.jackson.map.ser.StdSerializerProvider.serializeValue(StdSerializerProvider.java:256) ~[jackson-mapper-asl-1.9.13.jar:1.9.13]
at org.codehaus.jackson.map.ObjectMapper._configAndWriteValue(ObjectMapper.java:2575) ~[jackson-mapper-asl-1.9.13.jar:1.9.13] at
org.codehaus.jackson.map.ObjectMapper.writeValueAsString(ObjectMapper.java:2097) ~[jackson-mapper-asl-1.9.13.jar:1.9.13]

tried to add deserializer:

CustomDeserializerFactory deserializerFactory = new CustomDeserializerFactory();
 deserializerFactory.addSpecificMapping(LocalDateTime.class, new
CustomLocalDateTimeDeserializer());

ObjectMapper mapper = new ObjectMapper();
 mapper.setDeserializerProvider(new StdDeserializerProvider(deserializerFactory));

try {
 remoteActionDto.setPayload(mapper.writeValueAsString(response));
} catch (IOException e) {

 logger.error("Can not convert response to json!", e);
.....

}

the deserializer itself. I does not convert actually, but only proof of concept:

private static class CustomLocalDateTimeDeserializer extends
JsonDeserializer<LocalDateTime> {

@Override
public LocalDateTime deserialize(JsonParser jp, DeserializationContext ctxt) throws

IOException, JsonProcessingException {
return new LocalDateTime();

}
}

java json serialization jackson

edited Feb 24 '14 at 13:29 asked Feb 24 '14 at 12:58

Nikolay
326 4 11

 –
More code & more exception would be good. How did you try adding the customer (de)serializers? Where did
the exception occur? Dan Temple Feb 24 '14 at 13:11

 –
I added more info, but the thing that drives me crazy is why it try to convert string to object when I am trying
to do the opposite! Nikolay Feb 24 '14 at 13:31

(c) The related StackOverflow thread for FasterXML1174

2 Answers

I've written a quick test class to check what you've provided. It seems to run fine and output
the following:

{"value":[2014,2,24,13,42,44,745]}

Granted, that may not be the exact format you're looking for, but either way, here is the class:

public class JsonSerialization {

public static void main(final String[] args) {
try {

final Response response = new Response();

final ObjectMapper mapper = new ObjectMapper();
final String value = mapper.writeValueAsString(response);
System.out.println(value);

}
catch (final Exception e) {
 e.printStackTrace();
}

}

public static class Response {
LocalDateTime value = new LocalDateTime();
public LocalDateTime getValue() {

return this.value;
}
public void setValue(final LocalDateTime value) {

this.value = value;
}

}
}

I guess this raises the questions:

• Do you have getters and setters for your LocalDateTime property ()?registrationDate

• Are you sure the error is occurring where you think it is occurring? The exception is just
the part about Jackson, where does it say the method is called within

 code?
writeValueAsString

your

I know this isn't part of your question, but in 1.9.13 of Jackson, you should register custom (de)
serializers like so:

SimpleModule module = new SimpleModule("", new Version(1, 0, 0, "");
module.addDeserializer(LocalDateTime.class, new CustomLocalDateTimeDeserializer());
ObjectMapper mapper = new ObjectMapper();
mapper.registerModule(module);

answered Feb 24 '14 at 13:51

Dan Temple
1,764 1 7 26

Did you find this question interesting? Try our newsletter

Sign up for our newsletter and get our top new questions
delivered to your inbox (). see an example

OK Guys,

I found the problem (or actually a colleague of mine did it). It is the most stupid java behaviour
I've ever met. The problem was, that the DTO which contained the field was
populated via , and it seems possible to successfully set a value of type . A
class cast exception occurs when you try this field (not when it is being set).

LocalDateTime
reflection String

to use
...

If you ask why this happened - because we haven't configured a for ,
but for instead. My colleague used by mistake and Jackson silently
deserialized it as a

converter LocalDateTime

DateTime LocalDateTime

String edited Nov 7 '14 at 21:23

Ivaylo Slavov
4,279 6 30 78

answered Feb 24 '14 at 14:27

Nikolay
326 4 11

 –

I don't think it possible in any way to assign on this way. JVM would prevent that.
What IS possible, however, is with generics: if type was declared with type parameter like , then internally
it will be expressed as (or if bound, lower bound type), and that assignment would
proceed and produce exception when trying to access value.

String LocalDateTime
T

java.lang.Object
StaxMan 6 hours ago

(d) The useful answer for FasterXML1174
Fig. 1. An example link between fixed bug and forum thread

ones from many returned results, although it is tedious, and
determined by selected keywords.

EXPSOL extracts the links between fixed bugs and cor-
responding threads, and trains a model based on their key
features (Section III). For a reported bug, it automatically rec-
ommends its useful threads from StackOverflow. For example,
when Mary is fixing the newly reported bug, EXPSOL can
recommend the useful thread in Figure 1(c), since its trained
model identifies the semantic similarity between fixed bugs
and corresponding threads.

III. APPROACH

In this section, we first define our research problem (Sec-
tion III-A). We propose an approach, called EXPSOL, that
recommends forum threads to a bug report. Figure 2 shows
the overview of EXPSOL. It consists of four key components:
exception tree construction (Section III-B), exception tree
tagging (Section III-C), feature extraction (Section III-D), and
SVM-based recommendation (Section III-E).

A. Problem Definition
In our definition, we use R as a unified format to denote

online resource such as threads on StackOverflow, and call

Exception Tree
Construction

Exception Tree
Tagging

Bug report

Exception-related
Online Resources

Feature
Extraction

SVM-based
RecommendationSoftware

Programming
Taxonomy

Lexical

Program

Exception

Language
Layer

Tag Layer

Exception
Layer

Programmers

Component:
Data: Forum threadsStackOverflow threads

GitHub issues

Training Recommendation

Fig. 2. The overview of EXPSOL

each item r 2 R a resource item. Here, r is a seven-tuple
hi

r

, b
r

, T
r

, ST
r

, CS
r

, EP
r

, P
r

i, where i
r

is its title; b
r

is its
descriptions; T

r

is its tags; ST
r

is its stack traces; CS
r

is its
code samples; EP

r

is its extracted exception-related keywords;
and P

r

is its replies.
We define a newly reported exception-related bug c as a

five-tuple hl
c

, ST
c

, CS
c

, EP
c

, ED
c

i, where l
c

is the name of
its thrown exception; ST

c

is its stack trace; CS
c

is its code
samples; EP

c

is extracted exception-related keywords; and
ED

c

is its descriptions.
We then define the recommendation problem as follow: for

a c 2 C, the recommendation compares c with each resource
item r 2 R, and its goal is to find a function f : c ⇥ R 7!
{0, 1}. If (c, r) 2 C ⇥R^ f (c, r) = 1, it recommends r to c,
others not. We thus reduce our research problem as a binary
classification problem.

B. Exception Tree Construction

This component takes exception-related online resources
and a software programming taxonomy [31] as its inputs, and
builds an exception tree. The tree has three layers such as the
languages layer, the tag layer, and the exception layer.

1) The Language Layer: The first layer of the exception
tree is the language layer. We support programming languages
which currently implement exception handling mechanisms in
this layer. Each node in this layer denotes a programming
language, and the others node denotes other languages for the
future extension.

2) The Tag Layer: Most threads in StackOverflow and most
issues in GitHub have tags. Although such tags are useful to
classify online resources, they are not clearly defined. In our
previous work [31], we have built a software programming
taxonomy. The taxonomy is available from Datahub website5,
and our website provides a query interface6. As the taxonomy
is extracted from StackOverflow, it describes the hierarchical
semantic structures of tags on StackOverflow. Based on the
taxonomy, for each language, we construct the tag layer. The
major challenge lies in identifying children nodes from the
taxonomy. Algorithm 1 defines a recursive function with depth
first traversal.

5http://datahub.io/dataset/software-zhishi-schema
6http://swenet.me

In the algorithm, we assume that there is a set of n tags in
the taxonomy T = {t1, . . . , tn}. The hyponym information is
summarized in an n ⇥ n matrix H , where H

ij

= 1 denotes
that t

i

is a hyponym of t
j

, Hij = 0 otherwise. We use N =
{n1, . . . , nn

} to denote nodes of the exception tree, and E
to denote its edges. An edge e

ij

2 E denotes that n
i

is the
children of n

j

. We build the tag layer from selected tags in
the taxonomy T ⇤, and denote the nodes of the top two layers
as N⇤. We then match tags with nodes by means of the same
keywords or synonyms7, and define the matching function ⇣ :
T ⇤ 7! N⇤

T

and ⌘ : N⇤
T

7! T ⇤.
3) The Exception Layer: This layer consists of the

structure of exceptions. We could extract the struc-
ture of individual thrown exceptions. For example, from
java.lang.NullPointerException, we extract three keywords
such as java, lang and NullPointerException, and add the
corresponding nodes to the exception layer.

We further synthesize the structure of different exceptions,
and define a ⇠ function which builds the connections between
the tag layer and the exception layer. Algorithm 2 shows the
construction process. We locate exception tree tag layer nodes
which match with tags from the inputted resource.

Different exceptions can share the same prefix. For exam-
ple, jsp.JspTagException and jsp.SkipPageException share the
same jsp prefix. When this happens, we put the JspTagEx-
ception node and the SkipPageException node under the same
parent jsp node.

C. Exception Tree Tagging

This component builds linkages between exception-related
threads and issues. In particular, it adds those online resources
as leaf nodes to proper locations of the exception tree. As
shown in the last line of Algorithm 2, for each resource item
r, it links r with the exception nodes that are newly added in
exception tree E

EPr .
There are two special cases: (1) One thread or issue can

be linked to multiple nodes. To handle the case, Algorithm 2
links a thread or an issue to the common parent node of all the
related nodes. (2) Some threads and issues cannot be linked
to any node. For such resource items, Algorithm 2 links them
to the others node.

7The synonyms relations are in http://stackoverflow.com/tags/synonyms

Algorithm 1 Identifying Child Nodes in Tag Layer
Input:

A language or tag layer node n
j

in exception tree
Exception tree nodes set N
Exception tree edges set E
Taxonomy T and hyponym matrix H

Output:
Updated tree nodes set N and edges set E

1: t
j

= ⌘ (n
j

)
2: while t

i

2 TandH
ij

= 1 do
3: n

i

= ⇣ (t
i

)
4: N = N + {n

i

}
5: E = N + {e

ij

}
6: Algorithm 1 (n

i

)
7: end while

Java … others

J2SE jccd …

javax.servelet.jsp …

SkipPageException JspTagException …

Exception Tree

StackOverflow threads GitHub issues GitHub issues

Layer1: Languages

Layer2: Tags

Layer3: Exceptions

Fig. 3. Exception tree

D. Feature Extraction

EXPSOL uses three types of features: lexical feature, pro-
gram features and exception tree features. We define the
similarity metrics between a fixed bug b and an online thread
t as follows:

1) Lexical Feature (LF): The lexical similarity is as follow:

sim
LF

(b, t) =
~b · ~t

k~bk · k~tk
(1)

In the above equation, ~b and ~t denote the corresponding
term vector of b and t. Before calculation, we remove stop
words and links from b and t. We also stem the words which
can significantly improve results based on lexical similarity.

2) Program Features (PF): We define three similarity met-
rics for stack traces, code samples, and APIs.
1. Stack traces provide useful details to debug exception-
related bugs. Based on the code similarity in literature [25],
we define the similarity between track stacks:

sim
PF1(b, t) =

1

ham (b
stack

, t
stack

)
(2)

where b
stack

and t
stack

denote their stack traces, and ham
denotes their Hamming distance.

Algorithm 2 Identifying Exception Layer Nodes and Tagging
of Online Resource
Input:

A StackOverflow question or GitHub issue r
Exception tree nodes set N and edges set E

Output:
Updated exception tree nodes set N and edges set E

1: Extract resource tags set T
r

from r
2: Extract exceptions keywords set EP

r

from r
3: Locate tag layer nodes N⇤

r

which match with T
r

4: if N⇤
r

is empty then
5: N⇤

r

= {n
others

}
6: end if
7: while n

i

2 N⇤
r

do
8: if n

i

is parent of any node in N⇤
r

� {n
i

} then
9: N⇤

r

= N⇤
r

� {n
i

}
10: end if
11: end while
12: N = N +N

EPr

13: E = E + ⇠ (N
EPr) + ⇠ (N

EPr , N
⇤
r

)
14: Link r with N

EPr

2. Code samples can be provided to illustrate thrown excep-
tions. We define the similarity between code samples:

sim
PF2(b, t) =

1

ham (b
code

, t
code

)
(3)

where b
code

and t
code

denote their code samples.
3. APIs are important in programming tasks, and wrong APIs
can lead to bugs [30]. With the help of regular expression, we
extract the APIs, and define their similarity:

sim
PF3(b, t) =

|b
API

\ t
API

|
|b

API

[t
API

| (4)

where b
API

and t
API

denote the extracted APIs from b and
t, respectively.

3) Exception Tree Features (ETF): After the exception tree
construction and tagging process, all the exception-related
threads and issues become leaf nodes of the exception tree.
Based on the tree structure, we define the following two
similarity metrics.
1. Average Exception Tree Path Score. In a tree, two high
correlation nodes often have a short path, and the nodes
between them have small degrees. If the path from node n

j

to n
k

in the exception tree is P = {n
j

, · · · , n
k

}, we define
the weight of the path:

� (P) = � (n
k

)
k�1Y

i=j

� (n
i

)

|degree (n
i

)|� (5)

where

� (n) =

8
><

>:

↵, n 2 N
layer1

�, n 2 N
layer2

�, n 2 N
layer3

In the above equation, ↵, � and � are parameters describing
influences of three different layer nodes. We thus define the
similarity metric as average exception tree path score for b and
c as follow:

sim
ETF1 =

P
ni2bN

P
nj2tN

� (P
ij

)
P

ni2bN

P
nj2tN

(1)
(6)

where b
N

and t
N

denote the neighbors of b and t, respectively.
2. Average Exception Tree Altitude Difference. As two
nodes with a smaller height difference can share more in
common, we define the similarity metric to measure the
altitude difference of b and t as follow:

sim
ETF2 =

P
ni2bN

P
nj2tN

HeightDiff (n
i

, n
j

)
P

ni2bN

P
nj2tN

(1)
(7)

where HeightDiff calculates their altitude difference.

E. SVM based Recommendation

We reduce the recommendation problem to a binary-class
classification problem. In machine learning, support vector
machines (SVMs) [16] are supervised learning models, and
are widely used in classification. As SVM is one of the best
classifiers, we use it to solve our problem. As mentioned
in Section III-A, we do not have to calculate one exception
context c with all of the forum threads, which is very time-
consuming. Instead, we propose a filtering algorithm that is
based on the exception tree. As a result, EXPSOL needs to
compare only a smaller candidate set when it recommends
online threads.

1) Model Training: In SVM, the training data includes a set
of pairs {h~x1, l1i, . . . , h~xn

, l
n

i}, where ~x denotes a similarity
vector, and l denotes its label. A similarity vector ~x

i

includes
all the similarity values between a fixed exception-related bug
c
i

and an online thread t
i

. As our trained model identifies
two types of online threads, we define two types of labels.
In particular, a positive label denotes that an online thread is
useful for a fixed bug, and a negative label denotes that an
online thread is useless for a fixed bug. EXPSOL implements
SVM based on LIBSVM [7]. It is a popular library for SVMs.

Based on the training data, SVM constructs a hyperplane
that separates the training data into useful pairs and useless
pairs. The maximal margin hyperplane is as follow:

w =
nX

i=1

↵
i

l
i

�(~x
i

)) (8)

In the above equation, ↵ are real values, and � is a mapping
from the input space to a feature space. To locate the maximal
margin hyperplane w, we need to maximize:

nX

i=1

↵
i

�
nX

i,j=1

↵
i

↵
j

l
i

l
j

h�(~x
i

),�(~x
j

)i (9)

subject to

Algorithm 3 Candidate Set Filtering
Input:

A inputted bug report c
Exception tree nodes set N
Online resource set R

Output:
Candidate resource set R⇤

1: Extract exceptions keywords set EP
c

from c
2: Locate exception layer nodes N

EP

2 N
3: while n

i

2 N
EP

do
4: if n

i

2 EP
c

then
5: Get tagged resources R

i

2 R of n
i

6: R⇤ = R⇤ +R
i

7: end if
8: end while
9: return R⇤

nX

i=1

↵
i

l
i

= 0,↵
i

> 0 (10)

The decision function is expressed as follow:

f(x) = sign(
nX

i=1

↵
i

l
i

h�(~x
i

),�(~x)i � b) (11)

2) Candidate Set Filtering: Currently, there are more than
1 million exception-related forum threads and issues. As a
result, it is rather time consuming and often unnecessary to
compare those resource items one by one. To handle the
problem, before the recommendation, we propose an algorithm
to select only a subset of resource items. In particular, as
shown in Algorithm 3, for each newly reported bug c, we
link c with corresponding nodes of the exception tree, since
most exception-related bug reports c and online resources r
have exception name and keywords, and these keywords are
also useful in identifying exception-related bugs. From the
exception tree, we select the exception-layer nodes to match its
exception name with keywords. As a result, only subtree leaf
nodes of the linked nodes are selected as our recommendation
candidates.

3) Results Ranking: Our trained model classifies online
threads into useful ones and useless ones, and we rank
the results in the following way. Zadrozny and Elkan [29]
pointed that classifier scores can be transformed to estimate
the probabilities of its classified types. For each pair of a newly
reported bug and a thread, Equation (12) calculates a decision
value, and such value reflects the confidence of our trained
model on to what degree the thread is useful.

f
d

(x) =
nX

i=1

↵
i

l
i

h�(~x
i

),�(~x)i � b (12)

Following the guideline of Zadrozny and Elkan [29], we
define a sigmoid function to calculate the final ranks:

TABLE I
THE DATASET IN OUR EVALUATION

GitHub Issues StackOverflow Threads
Date Source GHTorrent Stackexchange
Datetime Jun. 2015 Mar. 2015
Total Issues(Threads) 24,156,972 8,052,478
Exception Related 938,898 826,185
Selected Pairs 2,000
Positive Pairs 1,200
Negative Pairs 800

f(d) =
1

1 + e��(d��))
(13)

where � and � are parameters, and d is calculated by Equa-
tion (12).

IV. EVALUATION

In this section, we first present our experimental settings
and then analyze the experiment results. We totally conduct
two evaluations to answer following questions:

• RQ1. How effective are EXPSOL’s internal features?
• RQ2. How does EXPSOL improve existing approaches?

A. Dataset
We retrieve StackOverflow’s threads from the Stackex-

change archive8 and retrieve the issues of GitHub from its
mirror, GHTorrent9 [14]. Table I shows the dataset in our
evaluation. Row “Total Issues(Threads)” lists total issues and
threads. Row “Exception Related” shows number of exception-
related bugs and threads. In total, there are millions of
exception-related issues and threads. As our underlying clas-
sification technique is supervised learning, it requires labeled
data for training. The quality of the labeled training data is
important, but it is often tedious and time-consuming to label
data manually. After the investigation, we find that when some
GitHub issues are closed, their discussions can contain related
threads on StackOverflow, and vice versa. Furthermore, we
find that if a closed GitHub issue mentions a StackOverflow
thread and vice versa, the referred resource item is very likely
to explain the resource item from the other side. As a result,
we programmatically extract such pairs from exception-related
items and apply carefully manually checking to filter out the
positive pairs. In a positive pair, the forum thread should be
the correct solution to the reported exception-related issue.
For negative pairs, we are also able to extract exception
context from one GitHub issue of the negative pair and treat
StackOverflow thread in the pair as the wrong solution. As
shown in Table I, in total, we prepare 2,000 pairs of GitHub
issues and StackOverflow threads as our dataset. It consists of
1,200 positive pairs, and 800 negative pairs.

B. Performance Metrics
We use a list of performance metrics from the research

areas of information retrieval and recommendation systems as
follows:

8https://archive.org/details/stackexchange
9http://ghtorrent.org/

0.34
0.41 0.44

0.55 0.21

0.34
0.38

0.40

0.39

0.65

0.77
0.86

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

LF LF+PF LF+ETF LF+PF+ETF

MAP@30 MRR@30 R@30

Fig. 4. The results of different models constructed by different feature(s)

1) Mean Average Precision (MAP): Average Precision is
the average of precisions computed at the point of each of the
relevant documents in the ranked sequence:

AP@N =

P
N

i=1(P (i)⇥ rel(r))

R
(14)

Where r is the rank, N is the number of retrieved doc-
uments, R is the number of relevant documents, rel() is a
binary function on the relevance of a given rank, and P (r) is
precision at a given cut-off rank. The Mean Average Precision
for N documents is the average of the Average Precision of
each query:

MAP@N =
1

|Q|

|Q|X

i=1

AP
i

@N (15)

2) Mean Reciprocal Rank (MRR): The Reciprocal Rank of
a query response is the multiplicative inverse of the rank of the
first correct answer. The Mean Reciprocal Rank is a statistical
measure that averages the Reciprocal Rank for each query in
the query set Q:

MRR =
1

|Q|

|Q|X

i=1

1

rank
i

(16)

3) Recall (R): Recall denotes the fraction of the relevant
results that are retrieved. In our experiments, we consider
recall as the percentage of the exception-related bugs for
which the solutions are recommended correctly.

C. RQ1. The Significance of Features
We use the labeled data generated in Table I as the ground

truth to validate our approach and apply a five-fold cross-
validation. Following the guideline of Golub et al. [12], we
randomly partition the pairs into five equal size subsamples,
so each subsample consists of 4,00 pairs. In each iteration,
we select a subsample as the validation set, and the remaining
pairs as the training set. The same training set is used for
the various feature combinations in each phase of the cross-
validation. In Section III-D, we define three types of features
such as the lexical feature (LF), the program features (PF),

TABLE II
RESULTS OF EXPERIMENTS ON EXISTING APPROACHES

Approach Metric Top 10 Top 20 Top 30

Google
MAP 0.3821 0.3438 0.3228
MRR 0.1836 0.1891 0.1921

R 72.00% 72.00% 74.50%

StackOverflow
MAP 0.1738 0.1529 0.1399
MRR 0.1083 0.1109 0.1134

R 15.00% 22.00% 22.00%

Cordeiro et al.
MAP 0.4332 0.4288 0.3683
MRR 0.2518 0.2572 0.2599

R 25.50% 27.00% 28.00%

EXPSOL
MAP 0.6043 0.5643 0.5482
MRR 0.3832 0.3895 0.3954

R 78.50% 83.50% 86.00%

and the exception tree features (ETF). As shown in Figure 4,
we totally trained four SVM models based on different com-
binations of features and measure the metrics at top 30.

Figure 4 shows the significance of our features. Our results
show that the combination of LF, PF, and EFT achieves
the best. When two types of features are considered, the
results are better than only lexical feature. From the results,
compared with total text similarity calculated in the lexical
feature, program features perform better. This is because an
exception context contains more program-related information
which describes exception more accurate like code fragments
or stack trace than natural language description. Also the
combinations with EFT (i.e., LF+ETF) is better than the
combination without EFT (i.e., LF+PF). It’s easy to find
that exception tree features are important and help a lot
especially in improving the Mean Reciprocal Rank (MRR)
and Recall (R). We consider this is mainly because the
information structured in the exception tree is accurate for and
good at describing and locating an exception. Programming
languages, tags, and exceptions play a more important role
in the recommendation than the general text description and
programming code.

D. RQ2. The Improvement over Existing Approaches
In this section, we compare our approach with other state-

of-the-art approaches such as the Google search engine, the
search engine of StackOverflow, and a Lucene-based retrieval
approach proposed by Cordeiro et al. [9]. From Table I, we
select 2,00 GitHub issues as our experiment input dataset. We
apply the approach of Cordeiro et al. to search the dataset in
Table I, but cannot limit the search scope of the Google search
engine and the search engine of StackOverflow.

To simulate the real development, we ask three experienced
programmers to build queries for the selected fixed bugs.
The programmers all have more than 5 years of development
experience. For the Google search engine and the internal
search engine of StackOverflow, the three programmers con-
figure queries from exception messages with the pattern of
“ExceptionName keywords”. We limit the search scope of the
Google search engine within StackOverflow with the site

keyword. Cordeiro et al. recommend StackOverflow threads

based on tokens that are taken from stack traces, code samples
and texts. We limit its search scope with the dataset in Table I.

The results in Table II indicate that our approach achieves
better results than other approaches. For the top 10 results, our
approach achieves the highest Mean Average Precision (MAP)
0.6043, while the results of other approaches are all below
0.45. For the top 30 results, although the Mean Reciprocal
Rank (MRR) and Recall (R) results of most the approaches
are better than their results for the top 10 and top 20 results,
their results still cannot catch up our approach. Cordeiro et al.
have relatively stable Mean Reciprocal Rank (MRR) results
but low Recall (R) values. It is interesting to find that, the
internal search engine of StackOverflow performs much lower
than Google, which highlights the performance of the Google
search engine.

V. THREATS TO VALIDITY

The threat to internal validity includes the constructed
queries in RQ2. While EXPSOL does not need a query, the
compared approaches (e.g., Google) do. As a result, we have to
manually prepare their queries, which can be biased. To reduce
the bias, we invited experienced programmers to prepare the
queries. However, it shows our benefits, since it does not need
programming experience to build queries.

The threat to external validity includes our selected subjects.
Although we select thousands of online resources, we apply
our approach only on limited online resources. The Internet-
scale resources are much more than our selected subjects. To
reduce the thread, we plan to integrate our approach with
existing search engines, and conduct evaluations on more
subjects in future work.

VI. RELATED WORK

Online forums host a rich information exchange, and there
are existing different online threads retrieval approaches. Cong
et al. [8] proposed a sequential patterns based classification
method to detect questions in a forum thread. Yang et al. [28]
took advantage of an adaptive feature-based matrix factoriza-
tion framework to make thread recommendations. Bhatia et
al. [3] proposed a model for online thread retrieval based
on inference networks that utilized the structural properties
of forum threads. Albaham et al. [1] adopted several voting
techniques that had been applied in ranking aggregates tasks
such as blog distillation and expert finding. Our approach
recommends online threads to assist developers in fixing
exception-related bugs, complementing the above approaches.

There are also some approaches that recommend software
artifacts to assist various tasks. These approaches can be
divided into retrieval filtering approaches and content-based
approaches. For the retrieval filtering approaches, they mainly
focus on constructing proper queries from context information
of programming exceptions, searching with the queries and
filtering out results [4]. Several existing search engines, such
as Bing, Google or internal search engines of online communi-
ties, will accept the queries and return a group of results [20],
[22]. With the help of ranking models and filtering strategies,

the highest scoring results are recommended [24]. Rahman et
al. [23] used APIs from Google to recommend relevant context
from web pages about programming errors and exceptions.
SurfClipse [21] is a context-aware meta search engine with the
support from Bing, Yahoo and Google APIs. Retrieval filtering
approaches dependent on third party services so heavy that
their performance is limited.

For the content-based approaches, they try to calculate the
similarity between resources and programming errors in the
IDE [15]. Seahawk [19] is an Eclipse plugin which supports
an integrated and largely automated approach to assisting
programmers in using StackOverflow. Monperrus et al. [18]
imported StackOverflow documents from the public data dump
and built document index with the help of Apache Lucene and
TF-IDF. Cordeiro et al. [9] developed a tool that integrated
recommendation of question/answer web resources in Eclipse,
according to the context of their exception stack traces.
Correa et al. [10] proposed an approach based on textual
similarly analysis and contextual data analysis to StackOver-
flow question recommendation for an incoming programming
bug. However, most of these approaches are constructed for
IDE or other specific environments, they may not work for
programming exception related issues or bug reports.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an approach, called EXPSOL,
which recommends forum threads for exception-related bug
reports. The two popular communities, StackOverflow and
GitHub, are selected to evaluate our approach. Differing from
the previous approaches, we construct an exception tree to
link resources from the two communities. Exception tree
based features are considered in our SVM training model
to help improve the results. The evaluation results show the
effectiveness of our approach. As for future work, we will try
to add more details to our exception tree, such as versions
of programming languages or external libraries. Moreover, it
would be interesting to enrich our approach with resources
from some other online communities or domains.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
comments. Beijun Shen is the corresponding author. This
research is supported by 973 Program in China (Grant No.
2015CB352203) and National Natural Science Foundation of
China (Grant No. 61472242). Hao Zhong is sponsored by
National Nature Science Foundation of China No. 61572313
and the grant of Science and Technology Commission of
Shanghai Municipality (No. 15DZ1100305).

REFERENCES

[1] A. T. Albaham and N. Salim. Adapting voting techniques for online
forum thread retrieval. In Prod. 1st AMLTA, pages 439–448, 2012.

[2] M. Allamanis and C. Sutton. Why, when, and what: analyzing stack
overflow questions by topic, type, and code. In Prod. 10th MSR, pages
53–56, 2013.

[3] S. Bhatia and P. Mitra. Adopting inference networks for online thread
retrieval. In Prod. 24th AAAI, 2010.

[4] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer. Example-
centric programming: integrating web search into the development
environment. In Prod. 28th CHI, pages 513–522, 2010.

[5] B. Cabral and P. Marques. Exception handling: A field study in Java
and .NET. In Prod. 21st ECOOP, pages 151–175, 2007.

[6] E. C. Campos, L. B. L. D. Souza, M. A. Maia, and L. B. L. D. Souza.
Nuggets miner: Assisting developers by harnessing the stackoverflow
crowd knowledge and the github traceability. In Proc. CBSoft - Tool
Session, 2014.

[7] C. Chang and C. Lin. LIBSVM: A library for support vector machines.
ACM TIST, 2(3):27, 2011.

[8] G. Cong, L. Wang, C. Lin, Y. Song, and Y. Sun. Finding question-
answer pairs from online forums. In Prod. 31st SIGIR, pages 467–474,
2008.

[9] J. Cordeiro, B. Antunes, and P. Gomes. Context-based recommendation
to support problem solving in software development. In Prod. 3rd RSSE,
pages 85–89, 2012.

[10] D. Correa and A. Sureka. Integrating issue tracking systems with
community-based question and answering websites. In Proc. 22nd
ASWEC, pages 88–96, 2013.

[11] M. Goldman and R. C. Miller. Codetrail: Connecting source code and
web resources. J. Vis. Lang. Comput., 20(4):223–235, 2009.

[12] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a
method for choosing a good ridge parameter. Technometrics, 21(2):215–
223, 1979.

[13] C. Gómez, B. Cleary, and L. Singer. A study of innovation diffusion
through link sharing on stack overflow. In Proc. 10th MSR, pages 81–84,
2013.

[14] G. Gousios. The ghtorrent dataset and tool suite. In Prod. 10th MSR,
pages 233–236, 2013.

[15] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What
would other programmers do: suggesting solutions to error messages.
In Prod. 28th CHI, pages 1019–1028, 2010.

[16] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf.
Support vector machines. Intelligent Systems and their Applications,
13(4):18–28, 1998.

[17] M. Mäntylä, J. Vanhanen, and C. Lassenius. Bad smells - humans as
code critics. In Prod. 20th ICSM, pages 399–408, 2004.

[18] M. Monperrus, A. Maia, R. Rouvoy, and L. Seinturier. Debugging with
the crowd: A debug recommendation system based on stackoverflow.
ERCIM News, 2014(99), 2014.

[19] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack overflow in
the ide. In Prod. 35th ICSE, pages 1295–1298, 2013.

[20] D. Poshyvanyk, M. Petrenko, and A. Marcus. Integrating cots search
engines into eclipse: Google desktop case study. In Prod. 2nd IWICSS,
page 6, 2007.

[21] M. M. Rahman and C. K. Roy. Surfclipse: Context-aware meta-search
in the ide. In Prod. 30th ICSME, pages 617–620, 2014.

[22] M. M. Rahman and C. K. Roy. Recommending relevant sections from
a webpage about programming errors and exceptions. In Proc. 25th
CASCON, pages 181–190, 2015.

[23] M. M. Rahman, S. Yeasmin, and C. K. Roy. An ide-based context-aware
meta search engine. In Prod. 20th WCRE, pages 467–471, 2013.

[24] M. M. Rahman, S. Yeasmin, and C. K. Roy. Towards a context-aware
ide-based meta search engine for recommendation about programming
errors and exceptions. In Prod. CSMR-WCRE, pages 194–203, 2014.

[25] M. S. Uddin, C. K. Roy, K. Schneider, A. Hindle, et al. On the
effectiveness of simhash for detecting near-miss clones in large scale
software systems. In Prod. 18th WCRE, pages 13–22, 2011.

[26] M. Umarji, S. E. Sim, and C. V. Lopes. Archetypal internet-scale source
code searching. In Prod. 20th OSS, pages 257–263. 2008.

[27] B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov. How social
q&a sites are changing knowledge sharing in open source software
communities. In Proc. CSCW, pages 342–354, 2014.

[28] D. Yang, M. Piergallini, I. Howley, and C. Rose. Forum thread
recommendation for massive open online courses. In Prod. 7th ICEDM.
Citeseer, 2014.

[29] B. Zadrozny and C. Elkan. Transforming classifier scores into accurate
multiclass probability estimates. In Prod. 8th KDD, pages 694–699,
2002.

[30] H. Zhong and Z. Su. An empirical study on real bug fixes. In Proc.
37th ICSE, pages 913–923, 2015.

[31] J. Zhu, B. Shen, X. Cai, and H. Wang. Building a large-scale software
programming taxonomy from stackoverflow. In Prod. 27th SEKE, pages
391–396, 2015.

	Introduction
	Motivating Example
	Approach
	Problem Definition
	Exception Tree Construction
	The Language Layer
	The Tag Layer
	The Exception Layer

	Exception Tree Tagging
	Feature Extraction
	Lexical Feature (LF)
	Program Features (PF)
	Exception Tree Features (ETF)

	SVM based Recommendation
	Model Training
	Candidate Set Filtering
	Results Ranking

	Evaluation
	Dataset
	Performance Metrics
	Mean Average Precision (MAP)
	Mean Reciprocal Rank (MRR)
	Recall (R)

	RQ1. The Significance of Features
	RQ2. The Improvement over Existing Approaches

	Threats to Validity
	Related Work
	Conclusion and Future Work
	References

