2016 23rd Asia-Pacific Software Engineering Conference

Task Recommendation with Developer Social
Network in Software Crowdsourcing

Ning Li*, Wenkai Mo*, Beijun Shen*f
*School of Software, Shanghai Jiao Tong University, Shanghai, China.
Tbjshen@sjtu.edu.cn

Abstract—Recently, crowdsourcing has been increasingly used
in software industry to lower costs and increase innovations, by
utilizing experiences, labor, or creativity of developers worldwide.
In software crowdsourcing platforms, developers expect to find
suitable tasks for their interests and abilities. So it is significant
for software crowdsourcing to build a recommender system
to match developers with suitable tasks. However, there are a
significant number of inactive developers who have very sparse
historical behavior records in the platform, and thus state-of-
the-art recommendation approaches in software crowdsourcing,
such as collaborative filtering, suffer from this cold-start problem.
In this paper, a social influence-based method is proposed to
recommend suitable tasks for both active and inactive developers.
The essential idea of the novel method is (1) to construct developer
social network from developer behaviors, such as browsing and
bidding for tasks, (2) to calculate the influence degrees between
developers using developer social network, (3) to recommend
tasks to active developers using SiSVD, and (4) to recommend
tasks to inactive developers by combining the recommended tasks
of their friends. We have evaluated our method on a large real
data set from the JointForce, a popular software crowdsourcing
platform in China. The results show that our method is feasible
and practical for recommendation in software crowdsourcing. In
particular, the F1-Measure of our method for inactive developers
with task-bidding friends is increased by 16.7% than other
previous approaches averagely.

Keywords—Software Crowdsourcing, Task Recommendation,
Social Network, Social Influence

I. INTRODUCTION

Recently, crowdsourcing has been widely used in many
tasks, such as taxonomy construction, some question answer-
ing tasks and so on. Software crowdsourcing platforms, such
as Topcoder!, Joint Force’ or Zhubajie®, demonstrate the
advantage of software crowdsourcing in term of cost decrease
and quality increase. Here a general procedure of software
development is that: (1) A task requester firstly posts a task
with a budget on the platform; (2) If a developer browses this
task, and thinks it is interesting and within his/her ability to
finish it, he/she can bid for it; (3) A task is usually bided
by many developers, then the requester will select the best
developer(s); (4) If the selected developer(s) complete the task
in time with high-quality, then the requester will pay for the
task.

However, if the developers with proper ability cannot find
their interesting tasks in time, it will bring much loss to
developers, task requesters and platform itself and then make

'https://www.topcoder.com/
Zhttps://www.jointforce.com/
3http://www.zbj.com/

1530-1362/16 $31.00 © 2016 IEEE
DOI 10.1109/APSEC.2016.38

Active developer with task

e (%)
QX) f /L/& € bidding experiments in platform
Y -
rea -

-

/v(_)

-

POy . Inactive developer without task
e bidding experiments in platform

-

e

Fig. 1. Developer Social Networks

these developers and task requesters leave the platform. To
attract and catch more users, a good recommender system for
a software crowdsourcing platform is very important, which is
also emphasized by academia. For instance, Aldhahri et al. [1]
considered software crowdsourcing should address two main
objectives: (1) to match developers with suitable tasks that fit
their interests and abilities, and raise their rewards; (2) to raise
the rates of completed tasks and the aggregated commissions
accordingly, which could be realized by building an efficient
recommender system.

There are two kinds of main approaches in recommender
systems, collaborative filtering [2][3] and content-based ap-
proaches [4]. Collaborative filtering (CF) approaches rely on
past user behaviors, e.g., bidding for or completing tasks
in software crowdsourcing, and do not require the creation
of explicit profiles. However, the main drawback of CF is
that it suffers from cold-start problem for developers without
sufficient behaviors. Although content-based approaches can
deal with cold-start problem through making recommendation
by developers and tasks profiles, constructing proper profiles
for recommendation is still difficult.

Some researches find that it will be effective to cope
with this problem by introducing new data sources like social
information between users [5][6]. Software crowdsourcing
platforms also have these social information among developers,
but it has unique features compared with traditional social
networks according to our observation in some typical software
crowdsourcing platforms. Fig. 1 illustrates a developer social
network. The edges in the graph denote social influence
between developer. All developers are divided into two cat-
egories, active developers and inactive developers based on
whether they have made bids for tasks. Inactive developers
have made no bids for tasks and they are a kind of cold-
start developers. With this observation, we attempt to introduce
the factor of social influence degrees to recommend tasks
through constructing developer social network. However, there

cps’s

Conference Publishing Services

are three challenges we may face: (1) How to calculate social
influence degrees between developers based on developer
behaviors and social information in software crowdsourcing
platform? (2) How to build recommender systems by utilizing
various behaviors of developers? (3) How to solve cold-start
problem for inactive developers?

To address these challenges, we propose a four-steps task
recommendation method. (1) Construction of Developer Social
Network. All developers in software crowdsourcing platform
are divided into two categories. Developers who have made
bids for tasks are active developers, and the other developers
are inactive developers who have no records about bidding
for and completing tasks and thus could be regarded as cold-
start developers. We construct a developer social network
among these developers. (2) Social Influence Analysis. We
define a formula to calculate social influence degrees between
every two developers based on developer behaviors and social
information in crowdsourcing platform; (3) Recommendation
for active developers. By considering developer-task ratings
and implicit feedback of their friends, a collaborative filtering
approach is proposed to recommend tasks to active developers.
(4) Recommendation for inactive developers. Inactive devel-
opers are recommended tasks by combining the recommended
tasks of their task-bidding friends. We measure the effective-
ness of our method on a real data set. The experimental results
show that it is feasible and practical in task recommendation
in the software crowdsourcing platform. In particular, the F1-
Measure of our method for inactive developers who have task-
bidding friends is increased by 16.7% than other previous
approaches averagely. Our main contributions are summarized
as follows:

e Our method constructs a developer social network
and calculates social influence degrees between de-
velopers, which controls different degrees of implicit
feedback of developers’ friends.

e Our method recommends inactive developers tasks
by combining the recommended tasks of their task-
bidding friends, solving the cold-start problem.

The rest of paper is organized as follows: Section II reviews
the related work. Section III is about problem definition and
approach overview. Section IV constructs a developer social
network and analyzes social influence degrees between devel-
opers. Section V introduces the details about recommendation
approaches. In section VI, we conduct experiments in a real
world data set. The conclusion and future work are shown in
Section VIL.

II. RELATED WORK

Our work is mainly related to three lines of researches:

A. Previous Social Influence Analysis in Social Networks

Much effort has been made for social network analysis
and a large number of work has been done [7]. As for social
influence analysis, some scholars utilized probabilistic model
to analyze social influence. For example, Anagnostopoulos et
al. [8] proposed methods to qualitatively measure the existence
of influence. Singla et al. [9] analyzed users’ social influence
based on a probabilistic model over users and their attributes

and relations. Crandall et al. [10] developed techniques for
identifying and modeling the interactions between social in-
fluence and selection, using data from online communities
where both social interaction and changes in behavior over
time can be measured. In recent times, some approaches with
efficient distributed learning algorithms have been proposed.
Tang el al. [11] proposed Topical Affinity Propagation (TAP)
to model the topic-level social influence on social networks.
TAP is designed based on Map-Reduce framework.

The approaches above only use social information to ana-
lyze social influence between users. In software crowdsourcing
platforms, there are developer behaviors of browsing, bidding
for and completing tasks. Our method could incorporate social
information and developer behaviors and thus makes a more
precise calculation on social influence degrees between every
two developers than the approaches above.

B. General Approaches for Recommendation

The traditional approaches on recommendation are collab-
orative filtering approaches, such as singular value decompo-
sition (SVD) [12][13][14], where the user gets items based
on other items with similar patterns of selected user. How-
ever, SVD only uses the latent low-dimension factor models
and ignores the contents of items and users, which causes
SVD suffers from cold-start problem. Some scholars proposed
content-based approaches for building a recommender system
[15][16][17]. Takacs et al. [18] constructed content similarity
matrix and used neighbor based approach on recommenda-
tion, which thinks users’ ratings are affected by their nearest
neighbors. Williams et al. [19] combined a cluster approach
into recommender systems, which considers the influence of
users in the same cluster. But it is difficult for content-based
approaches to construct proper profiles for recommendation.

In recent years, social information has been widely used
in recommender systems. Specially, Ma et al. [20] proposed a
social regularization approach by considering the constraint of
trust mechanism in social information. The idea is to share a
common user-feature matrix factorized by ratings and trust.
Yang et al. [5S] proposed a hybrid method (TrustMF) that
combines both a truster model and a trustee model from the
perspectives of trusters and trustees, that is, both the users who
trust a user and those who are trusted by a user will influence
the user’s ratings on unknown items. But these approaches
above just utilize trust relations in social information, which
do not analyze social information about users deeply.

C. Recommendation Approaches in Software Crowdsourcing
Platforms

Recommendation in software crowdsourcing platforms is
between developers and tasks, like users and items in general
recommender systems. In particular, Ambati et al. [4] pro-
posed a content-based recommendation approach for software
crowdsourcing, which combines developer performance and
interests. And for content-based approaches, it is different
to construct proper developer profiles. In addition, there are
some research papers to utilize approaches in natural language
processing for recommendation in software crowdsourcing
platforms. Zhu et al. [21] proposed a conditional random
field (CRF) approach to learn task characteristics from their

descriptions and developer characteristic distributions from
their historical tasks. Xie et al. [22] proposed DRETOM. It
models developers interest in and expertise on task resolving
activities based on topic models that are built from their his-
torical task resolving records. Wu et al. [23] proposed DREX
to developer recommendation based on K-Nearest-Neighbor
search with task similarity and expertise ranking with various
metrics, including simple frequency and social network metric-
s. The approaches above in natural language processing only
recommend to developers the tasks which have rich content
information in platforms. Additionally, Lin et al. [24] proposed
a recommendation approach based on collaborative filtering for
crowdsourcing, but the approach ignores social information.
Our recommendation approach optimizes CF approaches by
considering influence degrees between different developers,
calculated by developer behaviors and social information.

III. PROBLEM DEFINITION AND METHOD OVERVIEW
A. Problem Definition

Supposed that we denote all developers in a software
crowdsourcing platform as U and all tasks as I, we use
F C U x U to denote the friend relations between developers.
For a developer v € U, F), is the set of developers who are
friends with the developer. And from the records in platform,
there are three kinds of relations between developers and tasks:
(1) B C U x I to denote the relations that developers have
browsed tasks; (2) A C U x I to denote the relations that
developers have made bids for tasks; 3) C C U x I to
denote the relations that developers have completed tasks.
Consequently, for a developer v € U, B,,, A, C,, are the set of
tasks that the developer has browsed, bid for and completed,
respectively. Since there is no direct ratings that developers
make to tasks. We define the ratings using the records about
bidding and completing relations. Bidding relations indicate
that developers are interested in tasks, and completing relations
indicate that developers are interested in and also competent
in tasks. So we define the following rules:

o If a developer u bids for a task i, then r; is 3;

e [f a developer uw completes a task i, meaning the
developer w has bid for the task i previously, then
Tu,i is 5.

Based on the rules, we could construct a developer-task
rating matrix. Suppose that a crowdsourcing platform include
m developers and n tasks. Let R = [ry ;|mxn denotes the
developer-task rating matrix, where each entry r,, ; is the rating
given by a developer u to a task . And we need to find two
low-rank matrices: the developer-feature matrix P € R/*™
and the task-feature matrix Q € R/*" that can adequately
recover the rating matrix R, i.e. For a developer v € U and a
task ¢ € I, let I,, denote the set of tasks rated by the developer
u, and let p,, ¢; be f-dimensional latent feature vectors of the
developer v and the task i, respectively. In this regard, the
main task of recommendation is to make the predicted rating
Tw,; as close as possible to the ground truth r,, ;. Formally, we
can learn the developer-feature and the task-feature matrices
by minimizing the loss function, given by the formula (1):

L= %" (Fui—rui)® + MlallF + [lpall7)
(u,i)ET,

ey

Developer social

Recommendation
network

result

Social network
construction and
analysis

o
- £, "
\/, / - SiSsVD (&)
e S @ recommendation z
T 2 ()
Developer|behaviors - S 3
and social information

Tasks

Crowdsourcing data

Fig. 2. Overview of Our Method.

where ||.||p denotes the Frobenius norm. The constant A
controls the extent of regularization to avoid over-fitting when
learning parameters, which is usually determined by cross
validation.

B. Method Overview

Now, we provide an overview to explain the whole process
of our proposed task recommendation method for software
crowdsourcing. As shown in Fig. 2, we classify developers
in the crowdsourcing platform into two categories, active
developers who have made bids for tasks and inactive devel-
opers who have not. And then a developer social network is
constructed, where the vertices denote all developers, and the
edges denote social influence between every two developers,
which are calculated by developer behaviors and social infor-
mation in platform. Incorporating developer-task ratings with
implicit feedback of adjacent developers in the developer social
network, we propose a SiSVD approach to recommend tasks
to suitable developers. For inactive developers, our approach
recommends tasks by combining the recommended tasks of
adjacent active developers. In this paper, the ratings are calcu-
lated by the bidding and completing relations, and the implicit
feedback is calculated by the browsing relations.

IV. CONSTRUCTION AND ANALYSIS OF DEVELOPER
SOCIAL NETWORK

In this section, we first analyze software crowdsourcing
history data from the platform and construct a developer social
network. Then a formula is defined to calculate social influence
degrees between every two developers.

A. Construction of Developer Social Network

We use the data set of JointForce, a popular software
crowdsoucing platform in China. The data set contains social
information and developer behaviors of browsing, bidding
for and completing tasks. We divide developers into two
categories. AT'U is the set of active developers who have made
bids for tasks in the platform, and N ATU is the set of inactive
developers who have made no bids for any tasks. We could get
U= ATU UNATU. According to section III, F;, is the set
of developers who are friends with the developer u. We define
AF, = F,NATU. And now we raise the following questions:
(1) For a developer u € ATU or NATU, what the range is
the size of F), respectively? (2) For a developer u € NATU,
what the range is the size of AF,?

By the statistical results of the data set, we could answer
the questions above: (1) From Fig. 3, we could get that

20 above
15--20
10--15

5--10
0--5

range of
friend number

1000 1500 2000 2500

0--5
2219
| active developer 67 95

5--10 10--15 15--20 20 above
1692 55 80 15
376 302 66

|l inactive developer

number of developers

Fig. 3. Distribution about Ranges of Friend Number

20 above
15--20

10--15
range of

ATU friend num 5--10

0-5

4000

2000 3000 5000

0--5
3949
162

5--10 10--15 15--20 20 above
109 3 0 0
583 139 18 4

|l inactive developer

| active developer

number of developers

Fig. 4. Distribution about Ranges of ATU Friend Number

developers in ATU have more friends, almost more than 10.
But developers in N ATU have less friends, almost less than
10; (2) If we only focus on the number of friends who are in
ATU, Fig. 4 shows the fact that most developers in NATU
less than 5 friends who are in AT'U; (3) From Table I, for
about 91.6% of developers in NATU, they have at least one
friend who is in AF,,. By summarizing the results, we could
get that for most developers, no matter active developers or
inactive developers, they have rich friend relations available in
the crowdsourcing platform.

TABLE 1. THE SIZE OF AF SET FOR INACTIVE DEVELOPERS
[AFsetsize [0 [1T [2 [3] 3above |
[Percent | 84% | 434% | 32.1% | 1L1% | 50% |

For inactive developers, they have made no bids for any
tasks and thus are cold-start developers. Based on the summary
above, we have find there are closed relations between most
inactive developers and active developers, which helps to rec-
ommend suitable tasks to inactive developers. In addition, for
active developers, they could be influenced by the developers
with closed relations when they give ratings to tasks.

In this way, we can construct a developer social network
in software crowdsourcing platform.

B. Social Influence Analysis

With the developer social network, social influence degrees
between developers could be analyzed from two aspects. On
the one hand, there exists social influence only if developers
are friends with each other. On the other hand, social influence
degrees are decided by the similarity of browsing and bidding
for tasks. By combining two aspects above, we define the
formula (2) that calculates the social influence degree of the
developer u and v.

1
ZpeBva

Du,v :Fu,v(HE(llt(P)
ZpEBuuBu Heat(p))
1
ZpEAuﬁAU Heat(p)
+a)
ZpeAuUAv Heat(p)
Heat(p) = 0.1 % |Bp| + 0.3 % |4] 3)

In the formula (2), F, , tells whether v and v are friends.
If they are friends, I, , would be 1. Otherwise, I, , would
be 0. a controls the relative proportion between the similarity
of browsing tasks and the similarity of bidding for tasks. And
Heat(p) shows the popularity of the task p in the platform,
which is calculated by the formula (3). Heat(p) is similar
to the IDF in TF-IDF algorithm [25] to reduce the effects of
excessively popular tasks. BB, is the set of developers who have
browsed the task p and A, is the set of developers who have
bid for the task p.

V. SiSVD RECOMMENDATION

Based on the developer social network, we propose a
SiSVD approach for recommending suitable tasks to active
developers and inactive developers with higher performance.

A. Recommendation for Active Developers

For active developers who have made bids for tasks, we
recommend tasks to them using collaborative filtering (CF)
approaches. CF approaches produce developer specific recom-
mendation of tasks based on patterns of ratings without exoge-
nous information about either developers or tasks. In order to
recommend proper tasks to the developer, CF approaches need
to relate two different entities: tasks and developers. We use
singular value decomposition (SVD) to transform both tasks
and developers to the same latent factor space [12].

1) SVD Approach: According to Ekstrand el al. [12], SVD
maps tasks and developers to a joint latent factor space of
dimensionality f , such that developer-task interactions are
modeled as inner products in that space. The latent space tries
to explain ratings by characterizing both tasks and developers
on factors automatically inferred from developer feedback.
Accordingly, each task i is associated with a vector ¢; € R/,
and each developer w is associated with a vector p,, € /. For
a given task 7, the element of ¢; shows the extent to which the
task measures those factors. And for a developer u, the element
of p,, shows the extent of interest or ability the developer has
in tasks that are high on the corresponding factors. Now we
could capture a interaction between developer u and task i,
which could be calculated by g7 p,, the inner products of two
vectors above. The final rating is calculated by the formula (4)

~

Pui = 1+ bi + by + ¢ pu @
The parameters b,, and b; indicate the observed bias of devel-
oper u and task ¢, respectively, from the average. And p is the

average rating over all tasks.

2) SVD++ Approach: Some scholars improve the predic-
tion accuracy by adding the implicit feedback, which indicates
developer preferences [26]. For example, we could regard
developers’ browsed behaviors as the implicit feedback and
developers’ bidding behaviors as the explicit preference. Uni-
versally, there are richer browsing behaviors than bidding be-
haviors for developers. Now we focus on the SVD++ approach,
which improves the SVD approach by adding the implicit
feedback of developers. To this end, a second set of task factors
is added, relating each task i to a factor vector y; € RS,
to characterize developers based on the set of tasks that they
have implicitly rated. The predicted rating is calculated by the
formula (5), the set N,, means the tasks implicitly rated by
developer u.

®

1
NJFbiJFbuJFQiT(pu+|NU‘ 2 § Y;)
JEN,

~
Tu,i

3) SiSVD Approach: For an active developer u, we can
enhance SVD++ by incorporating the implicit feedback of
developers who are friends with the developer w. Specifically,
the implicit feedback of these developers can be considered in
the same form as implicit feedback of the developer u, given
by formula (6):

~ 1
Tu,i =H + bz + bu + qz'T(pu + |Nu| 2 E Y
JENy

_1
+ Z ‘Nv| 2Du,v ‘I.j)
veEF, JEN,

(©)

where F), is the set of developers who are friends with the
developer u. x; is the latent factor of a friend’s implicit
feedback. D, , given by the formula (2), denotes the social
influence degree between the developer v and v. For each given
rating r,, ; and correspond predicted rating 7, ;, the associated
prediction error is computed by e, ; = ry,; — 7y,;. From the
formula (6), for active developers who have no friends, we
could also recommend them tasks by SiSVD. But F,, is an
empty set and the recommendation by SiSVD is equal to that
by SVD++.

In order to learn the parameters (b, b;.pu, q;,y; and x;),
based on the formula (1), we define the regularized squared
error of SiSVD, given by formula (7):

L= > (eui)’ + A0 +02

(u,i)EL,
+llaillE + lpul [+ yillF + llz:il %)

)

The constant A controls the extent of regularization to
avoid over-fitting when learning parameters, which is usually
determined by cross validation.

We could minimize the loss by performed by the stochastic
gradient descent (Needell el al. [27]). The stochastic gradient
descent (SGD) optimization loops through all ratings in the
training data. And we modify the parameters by moving in
the opposite direction of the gradient. 7y is the learning rate,
we can make the formula (8).

bu — bu + V(Gu,z’ - /\bu)

bi <= b; + v(eu,s — Aby)

Pu = Pu + Y(€uiGi — APu)

g qiv(ewi(pu + N2 Dy
JEN.

+ 3 N 2Dy,
veF,

Yj) — AGi)
JEN,
. _1
Vj € Ny :yj < yj +v(ewiqs|Nu| "2 — Ayj)

Yo € Fy,Vj:€ Ny :aj < x;+ w(eu’iqiDu,v|NU|7% — Az;)
)]

Algorithm 1 SiSVD Train.
Input:
the rating matrix R;
the implicit feedback matrix N;
the set of active developers ATU;
the social matrix F', the set of tasks I;
the social influence degree matrix D;
max iteration times iter, learning rates -y;
regularization parameter)\, latent space dimension f;
Output:
Matrix P,Q,Y, X
1: init g
2: for v in ATU do
3: init by, py
4: end for
5. for 7 in I do
6
7
8
9

: init b;, q;, i, x;

. end for

: for k =1 to iter do
for r,; to R do

10: ?u,i = ﬂ+bi1+ bu+q;'r(pu+ |Nu|7% ZjENu Y +
Y over, |Nv‘_fDu,v 2 jen, i)

11: Cuyi = Tuyi — Tuyi

12: by < by + v(ew,i — Aby)

13: by < bs + y(€u,s — Ab;)

14: Pu 4 Pu+Y(€uiqi — Apu))

15: a <+ aewilpe + INu72D25en, ¥+
> veF, |Nv‘7%Du,v 2 jen, Ti) = Adi)

16: for j in N, do)

17: Y < Yj +v(€w,iqi|Nul 72 — Ayj)

18: end for

19: for v in I, do

20: for j in N, do

21: Tj < x; + ’y(eu,iqiDu,v|Nv_$ -)\Jij)

22: end for

23: end for

24: end for

25: end for

26: return P,Q.Y, X;

Algorithm 1 illustrates the trained procedure of SiSVD ap-
proach. b,, and b; indicate the observed deviations of developer
u and task 7, matrix P is the developer latent dimension feature
matrix, matrix @) is the task latent dimension feature matrix,
matrix Y is latent dimension feature matrix of the developers’
implicit feedback, and Matrix X is latent dimension feature

matrix of their friends’ implicit feedback. q;,vy;,x; is the ¢
row in Q,Y, X, and p, is the uw row in P. p is the mean
rating over all the platform. Lines 1 to 7 initialize the value
of by, bi, Pus Pis Qi» Yi» T; and p. Line 8 to 25 run the SGD
algorithm to learn the value of variables until the max iteration
times. -y is the learning rates. At last, we would get the matrix
P,Q,Y, X (line 26).

After getting the b,,b;, P,Q,Y and X, we could predict
the corresponding rating by the formula (6). We will recom-
mend tasks with high ratings to active developers.

B. Recommendation for Inactive Developers

For inactive developers, they have no records about task
bidding and thus have no ratings to tasks. We could not
recommend tasks to them directly by CF approaches. But
we could recommend inactive developers the same tasks as
those to their friends who have made bids for tasks. Because
some inactive developers have multiple task-bidding friends,
we should combine the ratings of all task-bidding friends.
Thus, for a developer u, 7, ; is calculated by formula (9).

=~ ZUGF“ NATU Du,vrv,i

Tu,i =

(€))

ZveFuﬂATU Du,v

D, is considered as the factors of social influence degrees
between developers, given by the formula (2). Based on the
predicted ratings, inactive developers are recommended the
tasks with high ratings.

VI. EXPERIMENTS

In this section, we first present our experimental settings
and then analyze experiment results. Two experiments are
conducted: (1) We verify our method in calculating social
influence degrees between developers and find the best pa-
rameter «; (2) We compare SiSVD with other approaches to
recommend suitable tasks to active developers and inactive
developers.

A. Experimental Settings

We use the data set of JointForce, including 1849 tasks
and 4967 developers, where 4631 developers have at least
one friend. For developer behaviors, there are 65535 records
for browsing behaviors, 8331 records for bidding behaviors,
and 443 records for completing behaviors in the data set.
Since the developer-task ratings are calculated by bidding and
completing relations, there are 8331 developer-task ratings
in platform. For these ratings, we use 4-fold cross-validation
for training and testing. Specifically, we randomly split these
ratings into four folds. In each iteration, three folds are used
as the training set, and the remaining fold as the testing set.
Four iterations will be conducted to ensure that all rating
folds are tested and we calculate average performance. For
CF approaches, the 65535 records about browsing behaviors
are used as implicit feedback.

Evaluation Metrics. We use precision, recall, and FI1-
Measure to calculate the ranking metrics, which are defined
as follows:

Precision : It is the percentage of correctly recommended
tasks in all recommended tasks.

Recall : It is the percentage of correctly recommended tasks
in the recommended task set of ground truth.

ANT
A
where A is the task set that our approach recommends to the

developer, and T is the recommended task set of ground truth.
Recommended task set is composed by top 10 rating tasks.

Precision = Recall =

ANT
T (10)

F1-Measure (F1): F1-Measure combines the overall result
of precision and recall, and is the harmonic mean of precision
and recall.

Pl 2 x Precision * Recall

an

Precision + Recall

For the rating metrics, We adopt another two well-known
metrics to evaluate predictive accuracy, namely mean absolute
error (MAE) and root mean square error (RMSE).

Zuiﬁ'\ui_r 7
MAE = =i *0
N

12)

Comparison Method. Three kinds of approaches are com-
pared with our approach, SiSVD:

(1) Neighbor-based approaches (Desrosiers and Karypis
[28]): developer neighbor-based (D-NB) and task neighbor-
based (T-NB) approaches;

(2) Cluster approaches: Cluster approaches make all devel-
opers (D-Cluster) or tasks (T-Cluster) into several clusters and
recommend tasks (Tsai et al. [29]);

(3) CF approaches: SVD++ and TrustSVD (Guo et al. [6]),
which take friend information in social networks into account.

B. Experiment about o on Social Influence Degree Calculation

The experiment is conducted on all active developers.
According to the formula (2) on social influence degree calcu-
lation, o controls the relative proportion between the similarity
of browsing tasks and the similarity of bidding for tasks.
We set the o different values and calculate social influence
degrees between developers to recommend them tasks with
SiSVD. Fig. 5 shows the impact of different o values on
the performance. If « is 3, the MAE and RMSE reach the
minimum value and our experiment gets the best performance.

C. Recommendation Compared with Other Approaches

In this experiment, we use different approaches to recom-
mend tasks to the developers. For inactive developers, they
have no records about bidding for and completing tasks. In
general, they give no ratings to tasks, but SiSVD calculates
the predicted ratings of inactive developers by combining
the ratings of their task-bidding friends. In other words, for
inactive developers, it is not the predicted ratings to make
sense, but the set of recommended tasks. So we only select

B MAE ¥ RMSE

1.125 1.098

0.972 0.962
0.815
0.625

j 0.606 0496 0.521 0.554

1 2 3 4 5

a value

Fig. 5. MAE and RMSE of Different « Value on Social Influence Degree
Calculation

B MAE RMSE

1.152
0.965 1.062
- 0.887

0.883 0.877

0.815
0.632 0.616

D-NB T-NB

Fig. 6. Rating Performance of Different Recommend Approaches for Active
Developers

0.59% 0649 0.549

D-Cluster SVD++

0.511 0.496

110

TrustSVD SiSVD

T-Cluster

precision, recall and Fl-measure as the evaluation metrics.
We compare task sets recommended by different approaches
to the recommended task set of ground truth. Since inactive
developers have no ratings to tasks, so the recommended
task set of ground truth is composed by the tasks that have
been browsed by inactive developers. In addition, when we
utilize SVD++ and TrustSVD to recommend tasks to inactive
developers, the rating matrix is a zero matrix, meaning both
the P matrix and () matrix are zero matrixes. So we do not use
SVD++ and TrustSVD as compared approaches to recommend
tasks to inactive developers.

Parameter Settings. The optimal experimental settings
for each approach are determined either by our experiments
or suggested by previous work [6][28][29]. For « on social
influence degree calculation, we set o = 3. Specifically, the
common settings are the size of recommended tasks, which is
10 and the number of latent features f = 10 for CF approaches.
The other settings are: (1) D-NB: the size of neighbors is 30;
(2) T-NB: the size of neighbors is 20; (3) D-Cluster: we use the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN Birant et al. [30]) for clustering developers. Eps =
0.1 and MINPTS =200; (4) T-Cluster: we use the DBSCAN
for clustering tasks. Eps = 0.2 and MINPTS = 80.

For task recommendation to active developers, the rating
performance of experiment is presented in Fig. 6, and the
ranking performance is shown in Fig. 7. For all the com-
parison approaches, SiSVD outperforms the other comparison
approaches. Since active developers have rich behaviors in
software crowdsourcing platforms, CF approaches (SVD++,
TrustSVD and SiSVD) mainly show better performance than
content-based approaches (D-NB, T-ND, D-Cluster and T-
Cluster). And TrsutSVD only uses social information about

15

B Precison ¥ Recall B F1-Measure

D-NB T-NB T-Cluster

D-Cluster

SVD++ TrustSVD SisvD

Fig. 7. Ranking Performance of Different Recommend Approaches for Active
Developers

M Precison Recall M F1-Measure

0.203 0.218

0.199

T-Cluster

D-Cluster

D-NB T-NB SiSVD

Fig. 8. Ranking Performance of Different Recommend Approaches for
Inactive Developers

whether two developers are friends or not. Compared to
SVD++, TrustSVD improves less performance than our ap-
proach does. In other words, compared to directly utilizing
friend relations, we could get more precision recommendation
results by considering the factor of social influence degrees
between developers.

For task recommendation to inactive developers who have
task-bidding friends, the experimental results are shown in
Fig. 8. Previous CF approaches, SVD++ and TrustSVD, could
not be used to recommend tasks to inactive developers, and
content-based approaches are the compared approaches. From
Fig. 8, SiSVD outperforms than compared content-based ap-
proaches, and F1-Measure of our method is increased by
16.7% than other previous approaches averagely. It means
our method could recommend suitable tasks to cold-start
developers who have task-bidding friends. The number of all
inactive developers is 4061, where 3720 inactive developers
have task-bidding friends and can get recommended tasks by
our method. So our method could recommend suitable tasks
to 91.6% of cold-start developers in JointForce.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel method for task
recommendation in software crowdsourcing platforms, using
the developer social network. It firstly constructs a developer
social network, and then combines social information and
developer behaviors for social influence degree calculation
between developers. Our method recommends suitable tasks
to active developers, using the ratings of active developers and

implicit feedback of their friends. And social influence degrees
are utilized to control different degrees of implicit feedback
of developers’ friends. Additionally, our method recommend
inactive developers tasks by combining the recommended
result of their task-bidding friends. According to experiment
results, our method indeed makes better performance than
other approaches, especially recommending tasks to inac-
tive developers with task-bidding friends, F1-Measure of our
method is increase by 16.7% than other previous approaches
averagely. It means, in some cases, our method solves cold-
start problem effectively.

In this paper, our method could pay attention to recom-
mending tasks to developers. As for future work, we will try
to recommend suitable developers to tasks. And since recom-
mendation in real crowdsourcing platforms can’t suffer from
the unsatisfied time consumption, we will also plan to explore
the efficiency of our method for real-time recommendation.

ACKNOWLEDGEMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242). Thanks JointForce for provid-
ing the experimental data set.

REFERENCES

Eman Aldhahri, Vivek Shandilya, and Sajjan Shiva. Towards an
effective crowdsourcing recommendation system: A survey of the state-
of-the-art. In Service-Oriented System Engineering (SOSE), 2015 IEEE
Symposium on, pages 372-377. IEEE, 2015.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 426-434. ACM, 2008.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceed-
ings of the 10th international conference on World Wide Web, pages
285-295. ACM, 2001.

Vamshi Ambati, Stephan Vogel, and Jaime G Carbonell. Towards task
recommendation in micro-task markets. In Human computation, pages
1-4, 2011.

Bo Yang, Yu Lei, Dayou Liu, and Jiming Liu. Social collaborative
filtering by trust. In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pages 2747-2753. AAAI Press,
2013.

Guibing Guo, Jie Zhang, and Neil Yorke-Smith. Trustsvd: Collaborative
filtering with both the explicit and implicit influence of user trust and
of item ratings. In AAAI, pages 123-129, 2015.

Dennis Saleebey. The strengths perspective in social work practice:
Extensions and cautions. Social work, 41(3):296-305, 1996.

Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. Influ-
ence and correlation in social networks. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 7-15. ACM, 2008.

Parag Singla and Matthew Richardson. Yes, there is a correlation:-from
social networks to personal behavior on the web. In Proceedings of
the 17th international conference on World Wide Web, pages 655-664.
ACM, 2008.

David Crandall, Dan Cosley, Daniel Huttenlocher, Jon Kleinberg, and
Siddharth Suri. Feedback effects between similarity and social influence
in online communities. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 160-168. ACM, 2008.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis
in large-scale networks. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 807-816. ACM, 2009.

(11

(21

(31

(41

(61

(71

(81

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative
filtering recommender systems. Foundations and Trends in Human-
Computer Interaction, 4(2):81-173, 2011.

Kai Yu, John Lafferty, Shenghuo Zhu, and Yihong Gong. Large-scale
collaborative prediction using a nonparametric random effects model. In
Proceedings of the 26th Annual International Conference on Machine
Learning, pages 1185-1192. ACM, 2009.

Osman Nuri Osmanli and Ismail Hakki Toroslu. Using tag similarity
in svd-based recommendation systems. In Application of Information
and Communication Technologies (AICT), 2011 5th International Con-
ference on, pages 1-4. IEEE, 2011.

Michael J Pazzani and Daniel Billsus. Content-based recommendation
systems. In The adaptive web, pages 325-341. Springer, 2007.

Raymond J Mooney and Loriene Roy. Content-based book recommend-
ing using learning for text categorization. In Proceedings of the fifth
ACM conference on Digital libraries, pages 195-204. ACM, 2000.

Prem Melville, Raymond J Mooney, and Ramadass Nagarajan. Content-
boosted collaborative filtering for improved recommendations. In
Aaaifiaai, pages 187-192, 2002.

Gébor Takdcs, Istvan Pildszy, Bottydn Németh, and Domonkos Tikk.
Matrix factorization and neighbor based algorithms for the netflix prize
problem. In Proceedings of the 2008 ACM conference on Recommender
systems, pages 267-274. ACM, 2008.

Elizabeth Williams, Jeff Gray, and Brandon Dixon. Mobile context
recommendations from social media through geotopical clustering.
University of Alabama, SERG-2015-01.

Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. Sorec:
social recommendation using probabilistic matrix factorization. In
Proceedings of the 17th ACM conference on Information and knowledge
management, pages 931-940. ACM, 2008.

Jiangang Zhu, Beijun Shen, and Fanghuai Hu. A learning to rank
framework for developer recommendation in software crowdsourcing.
In 2015 Asia-Pacific Software Engineering Conference (APSEC), pages
285-292. IEEE, 2015.

Xihao Xie, Wen Zhang, Ye Yang, and Qing Wang. Dretom: Developer
recommendation based on topic models for bug resolution. In Pro-
ceedings of the 8th international conference on predictive models in
software engineering, pages 19-28. ACM, 2012.

Wenjin Wu, Wen Zhang, Ye Yang, and Qing Wang. Drex: Developer
recommendation with k-nearest-neighbor search and expertise ranking.
In 2011 18th Asia-Pacific Software Engineering Conference, pages 389—
396. IEEE, 2011.

Christopher H Lin, Ece Kamar, and Eric Horvitz. Signals in the
silence: Models of implicit feedback in a recommendation system for
crowdsourcing. In AAAI pages 908-915, 2014.

Juan Ramos. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine
learning, 2003.

Yancheng Jia, Changhua Zhang, Qinghua Lu, and Peng Wang. Users’
brands preference based on svd++ in recommender systems. In
Advanced Research and Technology in Industry Applications (WARTIA),
2014 IEEE Workshop on, pages 1175-1178. IEEE, 2014.

Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient
descent, weighted sampling, and the randomized kaczmarz algorithm.
In Advances in Neural Information Processing Systems, pages 1017—
1025, 2014.

Christian Desrosiers and George Karypis. A comprehensive survey
of neighborhood-based recommendation methods. In Recommender
systems handbook, pages 107-144. Springer, 2011.

Chih-Fong Tsai and Chihli Hung. Cluster ensembles in collaborative
filtering recommendation. Applied Soft Computing, 12(4):1417-1425,
2012.

Derya Birant and Alp Kut. St-dbscan: An algorithm for clustering
spatial-temporal data. Data & Knowledge Engineering, 60(1):208-221,
2007.

