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ABSTRACT
Hosting over 10 million repositories, GitHub becomes the
largest open source community in the world. Besides sharing
code, Github is also a social network, in which developers
can follow others or keep track of their interested projects.
Considering the multi-roles of Github, integrating heteroge-
nous data of each developer to identify experts is a chal-
lenging task. In this paper, we propose GEMiner, a novel
approach to identify experts for some specific programming
languages in Github. Different from previous approaches,
GEMiner analyzes the social behaviors and programming
behaviors of a developer to determine the expertise of the
developer. When modeling social behaviors of developers, to
integrate heterogenous social networks in Github, GEMiner
implements a Multi-Sources PageRank algorithm. Also,
GEMiner analyzes the behaviors of developers when they
are programming (e.g., their commit activities and their
preferred programming languages) to model programming
behaviors of them. Based on our expertise models and our
extracted programming languages data, GEMiner can then
identify experts for some specific programming languages in
Github. We conducted experiments on a real data set, and
our results show that GEMiner identifies experts with 60%
accuracy higher than the state-of-the-art algorithms.

Categories and Subject Descriptors
H.2.9 [Software Engineering]: Management

Keywords
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1. INTRODUCTION
Distributed version control systems have played an im-

portant role in modern software engineering. One of such
popular systems is Git, supported by Github1, the largest

1https://github.com/
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open source community in the world. As of 2015, it is
reported that there have been over 9 million developers and
over 21.1 million repositories on Github2. There are a lot of
excellent projects ranging from the Linux kernel to famous
Web application frameworks such as Ruby on Rails, thanks
to the effort of developers on Github. In addition to its
role of hosting code, Github is also a social network. Like
any other social networks like Twitter, developers can follow
other developers. Also, developers can watch their interested
projects (also known as repositories in Github), to keep track
of them.

With the increasing of open source projects and registered
developers, it becomes difficult to seek experts for solving
problems in various tasks, especially for those new develop-
ers. Therefore, recommendation systems play an important
role to enhance the experience of developers. To recommend
experts, identifying them is a prerequisite. Compared
with StackOverflow3, another social network targeting at
developers, Github does not implement a tagging system
for experts [1]. As a result, identifying experts in specific
domains (e.g., C# and C++), on Github is challenging.

Most existing approaches focus on analyzing programming
behaviors [2] or social influence [3] of users. Our approach
is different in the following aspects:

• Our approach identifies both experts and high-quality
projects, since intuitively, high-quality projects are
likely developed by experts, and experts are often
willing to contribute to high-quality projects.

• When identifying experts, our approach considers both
the programming behaviors and the social influence of
developers.

• Instead of general experts, our approach identifies
experts for some specific programming languages. As
a developer cannot be an expert in all domains, it is
more practical to identify domain experts.

In this paper, we propose a novel approach, called
GEMiner, to mine domain experts on Github. Specifically,
GEMiner consists of two major steps:

• Network-based Expertise Modeling. In this
step, GEMiner treats Github as a social network
and analyzes the social structures of each developer.
Different from other social networks such as Facebook,

2https://en.wikipedia.org/wiki/GitHub
3http://stackoverflow.com/



there are three kinds of social networks in Github,
the following-followed network, the watching network
and the collaboration network. To integrate infor-
mation in the three networks, we propose a Multi-
Sources PageRank algorithm, an extended PageRank
algorithm. At the end of this step, each repository and
developer will be assigned to a separate PageRank.
The higher a value is, the better a developer or a
project is.

• Programming Behavior-based Expertise Mod-
eling. In this step, GEMiner treats Github as a
distributed version control system. In particular,
GEMiner analyzes how often a developer commits, and
the programming language of each commit.

Our results show that GEMiner identifies experts with
60% higher precisions than other state-of-the-art algorithms.
This paper makes the following contributions: (1) Our
approach focuses on identifying experts for specific pro-
gramming languages on Github. (2) Our approach utilizes
information extrated from social networks and program-
ming behaviors of each Github developer, and models the
expertise of developers from the two aspects. (3) We
propose a Multi-Sources PageRank algorithm to integrate
heterogenous social networks on Github.

The rest of the paper is organized as follows: Section
2 reviews the related work. Section 3 formally defines
the experts identification problem. Section 4 presents our
approach. Section 5 we conduct experiments in real world
data set to validate our method. We conclude the paper and
discuss future work in Section 6.

2. RELATED WORK
Experts identification in social networks and software

repositories is a hot research topic. As Github is a
combination of social networks and software repositories, our
approach is related to these two lines of research:

2.1 Network-based Expert Identification
Along with the popularity of social networks, one of

hot research topics in social network analysis is identifying
famous persons or experts, which is also a prerequisite to
construct the recommendation systems. The basic idea to
identify famous persons is to analyze the social influence of
users in the social network [4]. The core of a social network is
the social topological graph, defined as G = (V,E), in which
V is the vertex set and E is the edge set. In traditional graph
analysis, weak ties [5] and edge betweenness [6] are two
common criteria to measure the importance of edges, while
node-based centralities such as degree and PageRank [7] are
defined to measure the importance of a node. Based on these
basic criteria, many approaches have been proposed, which
can be categorized into (1) static social influence analysis,
and (2) dynamic social influence analysis.

(1) Static social influence analysis focuses on ana-
lyzing a static snapshot of a social networks. Static social
influence analysis methods can be further categorized to:
(a) Network Analysis-Based; (b) Ontology-Based; and (c)
Learning-Based. (a) Network Analysis-Based methods [3, 8,
9] focus on using some metrics to measure the importance
of nodes or edges in social networks. Zhang et al. [3]
tested a set of network-based ranking algorithms, including
PageRank [7] and HITS [10], on the large size social network

in order to identify users with high expertise and they
found that the PageRank-based expert finding algorithm is
better than other network-based algorithms in the online
community setting. Wang et al. [8] modified the PageRank
algorithm to evaluate user’s authority. They explored three
different expert ranking strategies that combine document-
based relevance and authority. (b) Ontology-Based methods
[11, 12, 13] are based on some existing ontologies, a
description of the social network schema, such as FOAF4.
Li et al. [12] developed a Find-XpRT project for finding
experts via rules and taxonomies. (c) Learning-Based [14,
15] approaches aim at applying machine learning techniques
to learn some knowledge from training data, and then ana-
lyzing the influence in future data. Tang et al. [14] proposed
a Topical Factor Graph (TFG) model to formalize the topic-
level social influence analysis into a unified graphical model,
and presented Topical Affinity Propagation (TAP) for model
learning. All these methods mentioned above can only adopt
to a single social network. However, there are three kinds
of social networks in Github, to integrating information
in these networks, we proposed a Multi-Sources PageRank
algorithm, a kind of Network Analysis-Based approaches to
obtaining the social influence of each user or repository.

(2) Dynamic social influence analysis considers the
time dimension of a social network. Holme et al. [15] pro-
posed a generative model to balance the effects of selection
and influence. Crandall et al. [16] proposed techniques for
identifying and modeling the interactions between social
influence and selection, using data from online communities.
Scripps et al. [17] proposed a matrix alignment framework
that incorporates the temporal information to learn the
weight of different attributes for establishing relationships
between developers. Our approach also considers the time
factor to evaluate the expertise of user. However, it is not in
networks analysis, but in programming behaviors analysis.

2.2 Behavior-based Expert Identification
Github is not only a social network, but also a distributed

version control system. Developers commit their code when
creating or maintaining their projects; therefore, behaviors,
such as how many times a developer commits to a project,
are also important criteria to identify experts. Identifying
experts or high-quality projects has been investigated by
several researchers [18, 19]. For high-quality projects
identification, Oskar et al. [2] analyzed the quality of
projects in Github and gave some interesting conclusion-
s. For example, projects owned by companies and other
organizations are in general more popular than projects
owned by individual developers. For experts identification,
Minto and Murphy [20] proposed the Emergent Expertise
Locator (EEL) approach that identifies experts based on the
recently edited or selected files. John and Gail [21] presented
an empirical evaluation of two approaches to determining
implementation expertise from the data in source and bug
projects. When determining experts for fixing bugs, they
consider two factors such as bug reports and bug networks.
However, the networks in bug reports is less complex than
networks in Github. Elben and Matthew [22] identified
experts for a specific piece of code based on a code base
and its fix history. Their approach models the expertise of a
developer by a function of that developer modifying the code
(e.g. writing a function) rather than using the code (e.g.

4http://www.foaf-project.org/
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Figure 1: Social Network Schemas.

calling a function). When identifying experts by analyzing
programming behaviors, our approach borrows their idea
[22].

On the other hand, there are many researches about
experts identification in another popular software social
network, StackOverflow. However, user behaviors in Stack-
Overflow and those in Github have huge differences, where
the former focuses on asking and answering questions, while
the latter focuses on programming. A kind of methods is
to measure the users’ expertise by non-textual information
such as their reputations and so on [23, 24, 25]. Jeon et
al. [25] proposed a method to model problem difficulty
and expertise in StackOverflow, where they select features
such as the activity of users and so on to create model to
measure the expertise of users. A different kind of methods
is based on the textual data of answers and questions users
posted [26]. Riahi et al. used a topic model [26], User
Persona Model (UPM), to model each question based on its
content similar to other probabilistic topic models and then
used these learned topics to represent persona distribution
of user profile. Experts can be finally identified from these
profiles.

3. PROBLEM DEFINITION
Supposed that we denote all the developers in Github as

U and all the projects as R, we use F ⊆ U × U to denote
the following and followed relations between developers, as
shown in Figure 1 (a); W ⊆ U × R to denote the watching
graphs, as shown in Figure 1 (b); and C ⊆ U × (R ∪ U)
to denote the collaboration graphs, as shown in Figure
1 (c). Consequently, a developer u ∈ U is denoted as
(Fu,Wu, Cu), where Fu,Wu, and Cu are three subgraphs
that u involves. Our goal is to find experts for specific
programming languages. Therefore, to evaluate expertise e
of a developer u for a programming language p, our method
needs to find a function f(u, p) = e, where e ∈ R. Based
on this function, an expert for a programming language can
can be defined as:

Definition 1. For a developer u, a programming language
p, and the skill of the developer f(u, p), an expert for p is a
developer, where f(u, p) is greater than a threshold α.

Figure 2 is the overview of GEMiner. Our goal is
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Figure 2: The Overview of GEMiner.

to identify experts for programming languages, and high-
quality projects in Github at the same time. Because
Github is not only a social network for developers, but
also a version control system, our approach, GEMiner,
considers the multi-roles of the Github. At the first step,
GEMiner analyzes the social network structures of each
developer. Because each developer involves in three kinds
of social graphs, we proposed a Multi-Sources PageRank
algorithm to merge the information in these three graphs
together and then obtain PageRanks for each developer and
project in these graphs. The higher the PageRank is, more
expertise this developer has or better the project is. At the
second step, GEMiner analyzes the programming behaviors
(commits) of each developer. When analyzing a commit,
GEMiner identifies which programming language is used in
committed files based on the file name extensions. The
mapping from file extensions to programming languages is
constructed manually. At the end of this step, GEMiner
also returns a score for each developer in each programming



Figure 3: An Example of Famous Persons but not
an Expert.

language. Finally, GEMiner combines these results obtained
from Multi-Sources PageRank algorithm and those from
programming behaviors analysis, and then returns the
expertise of each developer in each programming language
and the quality of each project in Github.

4. MINING EXPERTS IN GITHUB
To seek experts for programming languages in Github,

we consider two kinds of behaviors of each developer,
which are social behaviors and programming behaviors. To
model the social behaviors of each developer, we propose
a Multi-Sources PageRank algorithm that combines the
heterogeneous behaviors of each developer and each project,
in the following-followed graph, the watching graph and
the collaboration graph. Then, to model programming
behaviors, we consider the number of lines of code com-
mitted by each developer. On the other hand, to identify
the programming language from each commit, we manually
construct a mapping from the extensions of file names
to specific programming languages. Finally, GEMiner
combines the results that are obtained from both models.

4.1 Multi-Sources PageRank
PageRank [7] is an algorithm that ranks websites in the

Google search engine. It is a kind of link analysis algorithm,
which assigns a numerical weight to each element of a
hyperlinked set of documents. The higher the PageRank
of a website is, the higher quantity of this page. In a graph,
the PageRank of page is defined recursively and depends on
the number and PageRank metric of all pages that link to
it. Therefore, computing PageRank is an iterative process.
Given a graph G = (V,E), where V is the vertex set of
the graph and E is the edge set. Initially, the algorithm
assigns each PageRank as 1/|V |, v ∈ V , and then updates
the PageRank of each vertex by Equation 1 iteratively until
it converges. In Equation 1, L(u) denote the outdegree of u.

PR(v) =
∑

(u,v)∈E

PR(u)

L(u)
(1)

The equation has two problems. (1) If the graph is not
strongly connected, all PageRanks will be zero. (2) If there
exists a trap node in the graph, which does not point to
any other nodes except itself, PageRanks of all other nodes
will decline to zero and thus the ranking is meaningless.
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Figure 4: An Example of Friends of Experts.

To overcome the two problems, in this paper, we use a
variant PageRank algorithm [27] as shown in Equation 2, to
calculate PageRanks. In Equation 2, d is a damping factor,
and usually is set to 0.85. It plays as a random walk, which
means the current node can either jump to an adjacent node
or an arbitrary node in the graph. With the random walk,
traps and isolated nodes problem are solved.

PR(v) =
1− d
|V | + d ∗

∑
(u,v)∈E

PR(u)

L(u)
(2)

Following-Followed Graph. The following-followed
graph (a sample is shown in Figure 1(a)) is a very common
graph in social networks. Based on this type of graphs, the
PageRank algorithm is very effective to find famous persons
in social networks, because famous persons usually have
numerous followers. Based on Equation 2, their PageRanks
shall be higher than other persons. However, in Github,
we cannot fully determine experts on PageRanks, for two
exceptions:

(1) Famous persons may not be experts. Figure 3 shows
an American official account used to manage the law of
America. Although it is not related to any programming
work, there are numerous persons following this account,
and thus its PageRank in following-followed graph is very
high. This is not a programming expert by our definition.

(2) Friends of experts. In Figure 4, a developer sha-
harelisha may be a closed friend of another developer mdo
in the real world, so mdo follows shaharelisha. Although
shaharelisha has a high PageRank (because mdo is an expert
and he follows shaharelisha), from the profile of shaharelisha
in Github, she is not a programming expert by our definition.

Therefore, in the two situations, the PageRank algorithm
alone cannot fully identify experts. To identify whether a
person is an expert or a project is high-quality, the other two
graphs, the watching graph W and the collaboration graph
C, shall be considered, which is the reason why we need the
Multi-Sources PageRank algorithm.

Watching Graph. In Github, developers can watch



their interested projects. If we construct watching graphs
with direct edges from developers to projects (Figure 1(b)
shows such an example), all developers do not have indegrees
and all projects do not have outdegrees in this graph.
Therefore, we revise Equation 1 to Equation 3, where LW (u)
is the number of projects watched by developer u.

PR(r) =
∑

(u,r)∈EW

PR(u)

LW (u)
(3)

Collaboration Graph. Collaboration graphs (Figure
1(c) shows such an example) have two kinds of edges such
as developer-to-developer edges and developer-to-project
edges. If two developers collaborated to develop a project,
there is a developer-to-developer edge between them. If
a developer made contributions to a project, there is a
developer-to-project edge between them.

Considering watching graphs, many projects have already
been assigned PageRanks. However, some projects which
are not watched by any developers do not have the val-
ues. To ensure each project has its PageRank, we revise
Equation 1 to Equation 4. In Equation 4, r(U) denotes all
developers who participate in project r, and LC(u) dentes
the number of projects that u participates in.

PR(r)← PR(r) +
∑

u∈r(U)

PRu
LC(u)

(4)

At the same time, the PageRank of each developer shall be
updated to avoid the pre-mentioned problem, which is that a
developer may not be an expert despite of a high PageRank.
Based on our observations, if a developer collaborated with
experts many times, the developer may also be an expert,
and if a developer made contributions to many high-quality
projects, the developer is likely to be an expert. Both
situations can be detected by analyzing the collaboration
graph. If a developer has a high PageRank in the following-
followed graph, but seldom made contributions to projects
or collaborated with others, he can be lack of connections in
the collaboration graph. As a result, the PageRank of the
developer in the collaboration graph can be low.

PR(u1)← PR(u1) +
∑

(u1,u2)∈EC

PR(u2) ∗ |u1(R) ∩ u2(R)|
LC(u2)

(5)

PR(u)← PR(u) +
∑

r∈u(R)

PR(r)

LC(r)
(6)

We define Equations 5 and 6 to address the above two
situations. As shown in Equations 5, if a developer u1

collaborated with another developer u2, the PageRank of
u2 will transfer to u1. In Equation 5, LC(u2) is the number
of collaborators of u2 and u(R) are all the projects that the
developer u involved. As shown in Equation 6, if a developer
u has made contributions to a project r, the PageRank of
r will transfer to u. LC(r) is the number of contributors of
project r. After updating the PageRank of each developer,
we use Equation 7 to normalize all PageRanks of developers
and projects respectively.

PR(x) =
PR(x)∑
i∈X PR(i)

(7)

Algorithm 1 Multi-Source PageRank

Input:
The following-follower graph F ;
The watching graph W ;
The collaboration graph C;

Output:
PageRanks of all developers PRu;
PageRanks of all projects PRr

1: nu = numberOfDevelopers(C)
2: nr = numberOfProjects(C)
3: PRu = PageRank(F )
4: for i = 1 to nr do
5: PRri =

∑
(u,ri)∈W

PRu
LW (u)

+
∑

(u,ri)∈C
PRu
LC(u)

6: end for
7: for i = 1 to nu do

8: PRui+ =
∑

(ui,uj)∈C PRuj ∗
|ui(R)∩uj(R)|

LC(uj)

9: PRui+ =
∑
rk∈u(R)

PRrk
LC(rk)

10: end for
11: PRu ← normalize(PRu)
12: PRr ← normalize(PRr)
13: return PRu, PRr;

Algorithm 2 Obtaining Expertise from Programming
Behaviors
Input:

Developer u
Project r
The time factor function g(t); Programming language p.

Output:
Contributions made by u to project r with p.

1: S(u, p, r) = 0.0
2: for b in r do
3: if I(b, p) then
4: S(u, b) = 0.0
5: for i = 0 to numberOfV ersion(b)− 1 do

6: S(u, b)+ =
g(t)∗Contribution(u,bi,bi+1)

Lines(b)

7: end for
8: S(u, p, r)+ = S(u, b)
9: end if

10: end for
11: return S(u, p, r);

Algorithm 1 illustrates the Multi-Sources PageRank al-
gorithm proposed in this paper. Lines 1 and 2 count
the number of developers and projects in our data set
respectively. Line 3 runs the PageRank algorithm that
is implemented in NetworkX5 to calculate the original
rank for each developer in the following-followed graph.
Then, Lines 4 to 6 calculate the PageRank of each project
based on the watching graph, the collaboration graph, and
original ranks from the following-followed graph. Lines 7
to 10 update the PageRank of each developer to avoid
fake experts by combining developer collaboration (line 8)
and the developer involved projects line (9). Finally, it
normalizes PageRanks of all developers (line 11) and all
projects (line 12), respectively.

4.2 Programming Behaviors
5https://networkx.github.io/documentation/latest/index.html



Different from traditional social networks, as a version
control system, developers on Github make contributions
to projects (e.g., committing code). As these programming
behaviors reflect whether a developer is an expert or not, in
this section, we leverage programming behaviors to further
determine experts.

We use the lines of code that a developer created or
modified in a project to determine the contribution of
the developer. First, we introduce some notations. As
Github is a version control system, a code block b may
go through several modifications; namely, b = (b0, b1, ...bk),
where b0 = ∅. We use ∆(bi, bj) to denote the lines of
code that are modified from version bi to bj , and we define

Lines(b) as
∑k−1
m=0 ∆(bm, bm+1). For a developer u, we

use Contribution (u, bi, bj) to denote lines of code that the
developer u contributes from version bi to bj . The total
contributions that the developer u made to block b are
defined as Equation 8. In Equation 8, g(t) is a time factor,
which is the time difference between that commit and now.
If a developer did not make contributions to the project for
a long time, the expertise of the developer to this project
will decrease. We use Poisson distribution (Equation 9) to
measure this factor.

S(u, b) =

∑k−1
i=0 g(t) ∗ Contribution(u, bi, bi+1)

Lines(b)
(8)

g(t) =
λt

t!
e−λ (9)

On the other hand, when computing contributions of
a code block, our approach identifies the programming
language of each block, based on our predefined 45 mapping
relations from the the extension of file to the programming
language (e.g., .py is mapped to python). Furthermore, we
define Equation 10 to calculate the skill of a developer u on a
specific language p in a project r, where I(b, p) is an indicator
function, returning 1 if the block is written in language p.

Sp(u, p, r) =
∑
b∈r

I(b, p) ∗ S(u, b) (10)

Algorithm 2 illustrates how our approach computes the
contribution of a developer to a project, as far as a specific
programming language is concerned. As a project may be
implemented in multiple languages, Line 3 checks whether a
block is written in a programming language p. If it is, Lines
5 to 7 calculate the contribution accumulatively.

4.3 Expertise of Programming Languages
After obtaining the expertise from the two aspects such as

PageRank and programming behavior, we use Equation 11
to obtain the final ranks. In Equation 11, PR(u) and PR(r)
are the PageRanks of u and r, respectively. The two ranks
are obtained by the Multi-Sources PageRank algorithm,
and u(R) denotes all the projects that the developer u
involved. This Equation balances the social behaviors and
programming behaviors. If a developer is active in the social
network, but commits only several lines of code, the total
score of this developer will not be quite high. Besides, the
more projects the developer participated, the higher the
score is, according to the accumulation. On the other hand,
if a developer commits frequently, but is not followed by

other developers, the score of this developer will not be high
either. We consider these developers made many low quality
commits and thus others are not interested in them or their
projects.

S(u, p) = PR(u) ∗
∑

r∈u(R)

Sp(u, p, r) ∗ PR(r) (11)

5. EXPERIMENTS
In this section, we conduct experiments to validate the

performance of GEMiner. Firstly, we present our data set
and then analyze the results of experiments.

5.1 Data Set and Evaluation Metrics
To evaluate the performance of GEMiner, we use the data

dump in [28]. In our data set, there are totally 142,535
developers, corresponding to 1,075,194 projects. Our task is
to determine the expertise of developers and the quantity of
projects, and we consider it as an information retrieval task.
Therefore, we use the evaluation metrics in information
retrieval to evaluate the performance of GEMiner. As GEM-
iner can identify experts for 40 programming languages,
we rank the developers and projects respectively by their
scores in all domains. After that, we ask four students
whose major is computer science to evaluate the top-20
experts and projects and give scores to our results (like
or dislike). Specifically, they will investigate profiles of
the corresponding persons in Github, from the following-
followed information, the quality of repositories they have
contributed, and the activity of public contributions to
determine whether these persons are experts of not. For
example, in Figure 4, mdo is an expert while shaharelisha
is not. As for projects, they will investigate the number of
commits, stars, etc. and then give a judgement whether they
are high-quality. Based on their scores, we use Equation 12
to define the precision of our approach, where A denotes the
number of likes, and B is the number of total results (the
number is 20 in our experiments).

Precision =
|A|
|B| (12)

5.2 Experiments
In total, we conduct three experiments: (1) Network-

based Experts Identification without Programming Lan-
guages; (2) Experts Identification with Programming Lan-
guages; (3) Domain Experts Identification Compared with
Authoritative Sets; and (4) High-Quality Repositories Iden-
tification.

5.2.1 Network-based Experts Identification without
Programming Languages

In this experiment, we compare the results of our Multi-
Sources PageRank algorithm, the original PageRank based
on the random walk as described by Equation 2, and the
HITS algorithm [10] for their effectiveness. Our Multi-
Sources PageRank algorithm analyzes the following-followed
graph, the watching graph and the collaboration graph,
while the PageRank algorithm and the HITS algorithm
analyze only a single graph. We use the two compared
algorithms to analyze only the following-followed graph.
The reason why we do not apply them to the watching



Method Accuracy
PageRank 35.00%
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Figure 5: The Results of Network-based Expert
Identification without Domains.

graph and the collaboration graph is that in these two
graphs, there are two kinds of nodes, developers and
projects, but the nodes in following-followed graph only
consist of developers, which better fits the settings of the two
algorithms. To conduct this experiment, we select the top-20
developers from the three algorithms, and ask three students
to manually give a like or dislike score to each result.

Figure 5 shows the results. In Figure 5, the horizontal
axis donates the three algorithms, and the vertical axis
denotes their precisions. From the results, the performance
of our Multi-Sources PageRank is the best, at 90.00%,
followed by the PageRank algorithm, and then the HITS
algorithm. We investigate the two situations mentioned in
Section 4.1, and we find that both the PageRank and HITS
algorithms do not deal with the two situations effectively.
Some identified persons are popular developers or friends
of real experts, but not real experts. In total, our Multi-
Sources PageRank algorithm correctly identifies 18 experts,
while the PageRank and HITS algorithms identify 7 and 6
experts, respectively. Interestingly, we find that 5 experts
appear are identified by all the three algorithms, which
indicates that our Multi-Source PageRank algorithm may
filter fake experts and preserve real ones. We investigate
those experts that are identified by the other algorithms and
are not identified by our Multi-Sources PageRank algorithm.
We find that these developers are all not real experts, since
they do not join any high-quality projects. In the contrast,
real experts have high PageRanks, and they join many high-
quality projects. In summary, our results show that our
Multi-Sources PageRank detects more experts while filtering
fake experts.

5.2.2 Experts Identification with Programming Lan-
guages

In this experiment, we compare the results of the three
algorithms for their effectiveness in identifying experts for
some specific programming languages. When our Multi-
Sources PageRank algorithm analyzes developer behaviors,
it obtains the expertise of each developer in each program-
ming language. The final expertise of each developer in
each language is calculated by Equation 11. To compare
with PageRank and HITS, we multiply the scores that are
obtained from programming behaviors and those scores that
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Figure 7: Experts in the Domain JavaScript.

are obtained from PageRank and HITS. We evaluate top-20
developers of all the 40 programming languages.

Figure 6 illustrates the results of this experiment. In
Figure 6(a), we select the three programming languages such
as JavaScript, CSS and HTML; in Figure 6(b), we select the
three programming languages such as C++, Python and
C; Figure 6(c) illustrates the average results in all the 40
programming languages. According to these figures, our
algorithm achieves the highest accuracy in domain experts
identification, at 91.59% in average, around 60% higher than
that of PageRank and HITS.

5.2.3 Domain Experts Identification Compared with
Authoritative Sets

In the mainland China, CSDN6 is the largest community
for software developers. On CSDN, a recent article7 presents
a list of the most influential JavaScript developers on
Github. In this experiment, we use the list to evaluate the
effectiveness of our method. To conduct this experiment, we
present the top-k (k>=25) experts obtaining by GEMiner,
and then count the number of intersecting elements. Figure
7 illustrates the results, in which the horizontal axis donates
the number of top results (k), and the values in vertical
axis is the the number of intersecting elements between the
authoritative set and the top-k set. According to Figure 7,
when k = 25, the GEMiner totally seek 17 experts provided
in the authoritative list. When k = 55, all 25 experts
provided in the authoritative set are covered.

On CSDN, another recent article8 presents a list of the
most influential Web-Front developers on Github. We
consider that Web-Front developers shall have expertise in
domains such as HTML, CSS and JavaScript. To validate
the results in this comprehensive domain, we sum up the
scores that are obtained from domain HTML, CSS and
JavaScript and then rank. Figure 8 shows the results.
According to Figure 8, when k = 10, our algorithm seeks
6 experts in the authoritative list. When k is set to 30, all
the 10 experts provided in the authoritative list are detected.

5.2.4 High-Quality Repositories Identification
In this experiment, we validate the performance of repos-

itories identification of GEMiner. As GEMiner is based on
the assumption that high-quality projects are likely devel-
oped by experts, and experts are often willing to contribute

6http://code.csdn.net/
7http://www.csdn.net/article/1970-01-01/2808306
8http://code.csdn.net/news/2820990
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Figure 6: The Results of Experts Identification with Domains.
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Figure 8: Experts in the Domain Web-Front.

to high-quality projects, identifying high-quality repositories
is an subprocess of experts identification. To evaluate the
quality of a project in a specific programming language,
we multiple the ratio of lines in that language in that
project and its PageRank value. The results of high-quality
projects identification is illustrated in Figure 9, where the
horizontal axis donates the programming languages (We list
six languages here), and the vertical axis denotes their top-
20 accuracy. According to Figure 9, identifying Python
projects achieves the highest accuracy, at 85.00%. And the
average accuracy of all 40 languages is 82.48%, around 10%
lower than that of experts identification. We investigate
the results and find that most wrong results are from
the projects created by famous persons, because when we
calculate the PageRank of repositories, we accumulate the
PageRank of all their contributors. However, this does not
affect the results of experts identification.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose an experts identification ap-

proach, called GEMiner. To evaluate the expertise of
developers, GEMiner considers both the social influence
and programming behaviors of developers. To model the
social influence, we propose a novel Multi-Sources PageRank
algorithm, which utilizes the information of developers in
three types of graphs such as the following-followed graph,
the watching graph, and then collaboration graph. To model
programming behaviors, GEMiner considers the historical
commit information of each developer. During the process
of expert identification, each developer and repository are
labeled by some programming languages. Finally, based
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Figure 9: High-Quality Repositories Identification.

on these programming languages and expertise in each
language, experts for specific programming languages can
be identified.

To identify experts and high-quality projects more accu-
rately, there are still two aspects for further improvements:
(1) More Domains. Although GEMiner identifies 40 do-
mains (programming languages), the number of identified
domains is limited. Another way is to identify domains from
the descriptions and readme files of projects, which consist of
natural language with more meaningful information. More
specific domains can be identified with more advanced
techniques such as machine learning, data mining and etc.
(2) More Programming Behaviors. GEMiner considers only
the commit behaviors of each programmer. However, other
factors (e.g., the date when an account registered) can also
make contribution to identify experts, and will explored in
our future work.
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