
GRETA: Graph-Based Tag Assignment
for GitHub Repositories

Xuyang Cai, Jiangang Zhu, Beijun Shen†, Yuting Chen†
School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, Shanghai, China

Email: bakercxy@sjtu.edu.cn, †bjshen@sjtu.edu.cn, †chenyt@cs.sjtu.edu.cn

Abstract—GitHub is a well-known software community where
a large number of software repositories are hosted. Since large
amounts of documents and code in GitHub repositories are
in a mess, users cannot search or understand them efficiently.
One solution is to employ a tag system, which annotates each
repository with several tags. Thus, the GitHub repositories can
be more efficiently accessed and understood.

However, GitHub does not provide any automated tools of
tagging repositories. In order to tackle this problem, we propose
GRETA, a novel graph-based approach to assigning tags for
repositories on GitHub. The core insight of GRETA is (1) to
construct an Entity-Tag Graph (ETG) for GitHub using the
domain knowledge from StackOverflow, and (2) to assign tags
for repositories by taking a random walk algorithm. We have
implemented GRETA and also developed a repository search
engine for GitHub using the tag assignment results of GRETA.

We have evaluated GRETA against several baseline methods
to investigate its effectiveness of tagging GitHub repositories.
The results show GRETA achieves up to 35% of F-Measure,
outperforming the baseline methods. Besides, the GRETA-based
search engine gains a higher NDCG value than the search engine
provided by GitHub, indicating that it significantly enhances the
search ability on GitHub with the tagged repositories.

Keywords—Tag assignment, GitHub, cross-community.

I. INTRODUCTION

GitHub is one of the most popular software communities for

software developers. It facilitates software engineers to access

and manage source code everywhere, control software versions

conveniently, and collaborate with each other easily. Up to

2015, GitHub has over 9 million users and hosts over 21.1

million software repositories, becoming the largest software

community in the world [1]. Figure 1 shows an example of a

GitHub repository with its textual descriptions.

However, large amounts of documents and code existing

in repositories are usually in a mess. Thus, users cannot

efficiently search and access many repositories. In particular,

developers must spend much time on understanding a repos-

itory when it is accompanied with a mess of information.

They have to read textual documents and sometimes even code

to understand a repository and decide whether the repository

meets their requirements. Besides, the existing search engine

only retrieves repositories based on their explicit texts, rather

than their actual functionalities and characteristics.

One solution is to employ a tag system such that the GitHub

repositories can be more efficiently searched and understood.

† Corresponding Author

A tag system annotates each repository with one or more tags

on GitHub. The benefits of tagging software repositories are

in two folds. First, tag is a kind of metadata used widely in

websites and communities. It is also abstract and is easier to

understand than the concrete object (as well as its documents).

For example, “css” and “font” can be used as tags for the

text “how do float font-size values on CSS render among
browsers”. Second, a few latent relations among the software

repositories can be uncovered by tags. These relations facilitate

engineers to search for related software systems or trace

software evolving histories. However, GitHub does not provide

any automated tools of tagging repositories.

Up to now, the related work of tagging objects is mainly

divided into two categories: tag assignment and tag extraction.

Tag assignment relies on the human intuition to assign tags

to objects. The method needs a predefined dictionary, which

may be indeterminate for tagging a practical system [2]–

[5]. Besides, many existing tag assignment methods omit the

shared knowledge among objects; each object is tagged inde-

pendently from the others. Tag extraction advocates the idea of

extracting keyphrases as tags directly from object documents

[6]–[15]. However, since a repository description on GitHub

is usually short, and its readme document sometimes only

concerns the usage of the project (such as how to install

the system and how to setup configurations), the repository

documents may be inadequate for tag extraction. Thus, it

weakens the representativeness of the tags used for tagging

a GitHub repository.

We observe that many software developers who have con-

tributed to the GitHub repositories are also involved in other

communities for software development. For example, Stack-

Overflow is one of the most popular Q&A communities. It

allows software developers to raise questions, share their de-

velopment experiences, and search for solutions to problems.

More importantly, StackOverflow allows developers to tag

questions. Figure 2 shows a question posted in StackOverflow.

The question is marked with some tags assigned by the

questioner. So far, there are more than 45,000 distinct tags

and millions of questions in the community. These labeled

tags in StackOverflow are mainly concerned with four aspects:

languages, frameworks, API usages and technical supports.

As a large number of software developers who contribute

to repositories on GitHub also raise and answer questions

on StackOverflow, we believe these tags can represent some

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.124

63

domain knowledge of software development, and they can also

be used to generate a tag dictionary and be assigned to the

repositories on GitHub. But how to bridge the gap between

GitHub and StackOverflow is still a challenging problem.

Fig. 1: Descriptions of a repository on GitHub.

Fig. 2: A question posted on StackOverflow.

In order to tackle this problem, we propose GRETA, a

novel graph-based approach to assigning tags for repositories

on GitHub. The core insight of GRETA is (1) to construct

an Entity-Tag Graph (ETG) for GitHub using the domain

knowledge (e.g., repositories, questions and tags) from cross-

communities (e.g., GitHub, StackOverflow), and (2) to prop-

agate tags in ETG by taking an iterative random walk with

restart algorithm [16]. An ETG is mainly composed of a set of

nodes representing the repositories on GitHub. It also includes

domain knowledge collected from StackOverflow. During the

propagation, domain knowledge is shared among nodes and

tags are assigned to the GitHub repositories.

This paper makes the following contributions:

1) Approach. GRETA is a novel, graph-based approach

to tag assignment for repositories on GitHub, which

allows tags to be assigned by some graph algorithms.

GRETA is also a cross-community approach, which

utilizes the domain knowledge from StackOverflow for

facilitating tag assignment. For this purpose, we design

an Entity-Tag Graph (ETG) for establishing relations

between GitHub repositories and StackOverflow tags,

and then use a random walk algorithm to tag software

repositories.

2) Implementation. We have implemented GRETA and

also developed a repository search engine for GitHub

using the tag assignment results of GRETA, which is

the summarization of characteristics for better software

retrieval.

3) Evaluation. We have evaluated GRETA against sever-

al baseline methods to investigate its effectiveness of

tagging GitHub repositories. The results show GRETA

outperforms the baseline methods in that it achieves up

to 35% of F-Measure. Besides, the GRETA-based search

engine gains a higher NDCG value than the existing

search engine in GitHub, indicating that it significantly

enhances the search ability on GitHub with the tagged

repositories.

The rest of this paper is organized as follows: We introduce

the related work in Section II. We next present the GRETA

approach and the GRETA-based engine in Sections III and IV,

respectively. Section V presents an evaluation of the GRETA

approach and the engine. Section VI concludes.

II. RELATED WORK

Tag extraction. Tag extraction mainly concerns about how to

select important and topical phrases from a textual description

[17]. Techniques for tag extraction can be supervised or

unsupervised.

A series of supervised tag extraction techniques have been

proposed [6]–[8]. They mainly take tag extraction as a binary

classification task, which trains a binary classifier to determine

whether a set of candidate phrases are suitable for acting as

tags. Different classification algorithms, such as Naı̈ve Bayes

[7] [8], decision tree [6], and multi-layer perceptron [9] [10],

have been applied.

However, supervised tag extraction integrating classification

formulation has some drawbacks. On the one hand, the training

data may be unbalanced. Since only several tags can be

selected for a document, the vast majority of candidate phrases

are negative examples. Moreover, when multiple candidate

phrases for an object are classified by the binary classifier

as positive, it is not easy to distinguish which phrases are

more representative than the others. These problems lead to

a non-ideal performance in tag extraction with traditional

classification. Thus, Jiang et al. [11] propose a learning-to-

rank approach to perform this task. Compared with traditional

classification approaches, the ranking-based approach signifi-

cantly improves the extraction performance. On the other hand,

it is time-consuming to use the supervised methods, because

they need a training set with manual annotations.

Among unsupervised approaches, graph-based ranking

approaches are most widely used. The basic idea of this

approach is to build a graph from the input document and

rank its nodes using a graph-based ranking method. The

most well-known graph-based method is TextRank [12]: It

treats all the phrases as nodes and those phrases in a window

with a fixed size are linked by unweighted edges. Then, a

traditional PageRank1 algorithm is applied on this graph.

Those phrases with high PageRank values are selected as

tags. Rather than focusing on a single document for tag

1https://en.wikipedia.org/wiki/PageRank

64

extraction, Wan et al. [13] leverages a small number of

nearest neighboring documents for tag extraction. Another

unsupervised approach for tag extraction is clustering-based

approach [14] [15]. Liu et al. [14] leverage several clustering

techniques to find some exemplar terms, which semantically

cover the object document. They then extract keyphrases

from the exemplar terms. Grineva et al. [15] model a graph

with semantic relationships between documents, and apply

graph community detection techniques to partition the graph

into thematically cohesive groups of terms. They then use a

criterion function to extract tags.

Tag assignment. Tag assignment aims to assign some tags

for each repository, even though these tags may not appear

in its descriptions. So tag assignment needs to construct a

predefined dictionary first. Two widely used dictionaries are

the hierarchical concept tree provided by Open Directory

Project (ODP)2 and Wikipedia3. If we take the phrases in

the dictionary as tags, the tag assignment problem can be

casted as a multi-class multi-label classification problem [2]

[3]. When the size of the dictionary is large and that of the

training data for each tag is small, some semi-supervised

learning algorithms are adapted. They can use a little labeled

data to build the classification model. Moreover, traditional

classification algorithms such as support vector machine

(SVM) is hard to tackle with such a large number of tags.

Xue et al. [4] propose a search heuristic to reduce the number

of tags by taking the hierarchical relations between them.

Madani et al. [5] propose Feature Focus Algorithm (FFA). It

is convenient to constrain each feature to connect to a small

subset of the classes in the index, which is a mapping from

features to classes. They use an index-learning approach that

is highly advantageous for space and time efficiency.

Tagging in Software Engineering. Tagging objects in software

engineering sites has been studied extensively [18]–[20]. Wang

et al. propose EnTagRec, a tag recommendation system which

combines the Bayesian Inference, Frequentist Inference and

spreading activation technique [21] to recommend tags for

StackOverflow [18]. Xia et al. propose a tag recommendation

for software information sites like Freecode and StackOver-

flow based on multi-label classification [19].

This paper presents an approach to assigning tags for

GitHub repositories. Compared with existing tag assignment

approaches, GRETA employs the cross-community knowledge

when tagging repositories, which saves human efforts on

defining a tag dictionary. GRETA also allows tags to be

propagated and prioritized for tag assignment.

III. APPROACH

A. Problem Formulation

In general, the task in this paper is to assign tags for unla-

beled repositories on GitHub. The task can also be formulated

2http://www.dmoz.org
3https://www.wikipedia.org/

Entity

Tag

python

ide

code-completion

wing-ide
email

encoding

0.85

0.76

0.26 0.26

0.16

0.37

0.60

0.54

0.63

q : question

r : repository

influence relation

dependent relation

q - id: 141

r - id: 136802

q - id: 39687

0.61

0.58
0.46

0.19

Fig. 3: An example of ETG.

as follows. Let q be a question and Q be a collection of

questions. Let r be a repository and R be a collection of

repositories. Let U be a collection of users, who participate

in one or more repositories and/or questions. Let the set of

tags used for questions in Q be T . Since there are plenty of

textual materials in both communities, we combine question
and answers in StackOverflow to denote a question document

dq . While in GitHub, we combine a repository’s description,

language and readme to denote a repository document dr. The

document collection is denoted as D and the word vocabulary

V , and the words in dr and dq are taken from V .

Thus, a question is defined as a 3-tuple q = {Uq, Tq, dq}:
Uq ⊆ U is a set of questioner and responders of q; Tq ⊆ T is

a set of tags annotated to q. An unlabeled repository is defined

as a 2-tuple r = {Ur, dr}: Ur ⊆ U is the set of developers in

repository r. Given an input set I = {Q,R, T, U}, we output

a labeled repository set R′, in which elements are represented

as a 3-tuple r′ = {Ur, dr, Tr}, where Tr ⊆ T .

ETG definition. An ETG is defined as a weighted graph. As

Figure 3 shows, an element of an ETG can be:

1) A vertex: There are two types of vertices in ETG. One

is entity, including both question and repository. The other is

tag, which represents a distinct tag in T .

2) An edge: The edges in ETG represent two kinds of

relations. One is a directed edge between entities. It shows

the knowledge-sharing probability from an entity to the other,

denoted as influence relation. The other is an undirected

edge between tag and entity. It shows the tag assignment

probability on entities, denoted as dependent relation.

Data set. In our study, the data we use is all before July,

2015. We first select some repositories with many stargazers

and forks in GitHub, and some questions with huge amount

of votes or answers in StackOverflow. They are collected in R
and Q respectively. We then collect the users who participate

in at least one repositories in R and/or questions in Q and also

identify the same users in the user set from both communities.

In order to ensure the accuracy of the similarity calculated

between entities, we only use the simple heuristic rule to make

identification: if a user profile url in StackOverflow and that

in GitHub link to the same site, the two users are taken as the

same person [22]. All these identified same users are collected

65

Subgraph

Extraction

Tag

Propagation

ETG

Component

Data

Key Phrases

Annotated
Tags

Collaboration
Factor

Lexical
Factor

Key Phrase
Extraction

Transition
Graph

Construction

1

Repositories

Tags

…

GitHub

Graph Construction Tag Assignment

…

Questions

Tags

Repositories

…

Cross-Communities

GitHub StackOverflow

Random Walk

Algorithm

Target Graph
Construction

Factor
Selection

Convergent

Target Graph

Transition
Graph

Initial Target
Graph

Fig. 4: Workflow of GRETA.

in U . Thus, we totally collected 217,089 questions and 416,666

repositories, with 35,931 users and 38,205 annotated tags.

Unlike some popular social communities such as Twitter

[23] and Weibo [24], users in StackOverflow or GitHub

sometimes provide code fragments when raising questions or

introducing their projects. However, as there is no such an

engine that is strong enough for abstracting any program code

to their functionalities, code usually cannot be processed as

well as textual descriptions. Thus we remove all the code

fragments from documents. It is also necessary to remove the

stopwords (e.g., the, for, of) and special characters (e.g., :-(,

@,&, ...).

B. Approach Overview

We propose a novel, graph-based approach to assigning

tags for repositories by using cross-community resources. As

Figure 4 shows, the workflow of our approach is mainly

divided into two phases.

1) Graph Construction: We collect a set of entities includ-

ing questions on StackOverflow and repositories on GitHub,

in which we identify a few same users who participate in

the both communities. After that, we build an ETG from two

views. One view is a transition graph, which explains the

influence relation between entities. The other view is a target
graph, which indicates the dependent relation between tags

and entities.

2) Tag Assignment: We extract a subgraph from the orig-

inal ETG and apply an iterative random walk algorithm to

propagate tags to repositories. A random walk on a graph can

propagate tags along the edges and provide knowledge sharing

between indirectly connected nodes [25]. We finally get a

convergent target matrix, which provides the tag probability

distribution for entities. We use it to select appropriate tags

for each repository.

C. Graph Construction

Transition graph construction. We now illustrate the details

of constructing transition graph GT . All vertices in GT are

entities, including questions or repositories. The edges are

bi-directional between entities, representing their influence

relation. We use matrix MTN×N
to represent GT , where

N = |R|+ |Q|. Each row in MT represents an entity ei. The

top |R| rows in upper-semi transition matrix M�
T correspond

to repositories in R, and the rest in lower-semi transition

matrix M⊥
T correspond to questions in Q. Correspondingly,

columns in MT have the same definition as rows. Table I

illustrates the matrix representation of the transition graph.

TABLE I: Transition matrix MTN×N
.

Repositories Questions
e1 ... e|R| e|R+1| ... eN

e1 y11 ... y1|R| y1|R+1| ... y1N
...
e|R| y|R|1 ... y|R||R| y|R||R+1| ... y|R|N
e|R+1| y|R+1|1 ... y|R+1||R| y|R+1||R+1| ... y|R+1|N
...
eN yN1 ... yN|R| yN|R+1| ... yNN

The element in MT shows the weight of the edge from

entity ej to ei in GT , which is denoted as yij |i,j≤N . It

represents the probability whether the entity ej would share its

tags with ei. We mainly concern about two factors including

lexical and user collaboration to compute yij . The details of

these factors are as follows:

1) Lexical factor: Lexical factor is the measurement of the

similarity between two entities in terms of their documents. Let

the document of entity ei be denoted as di. We use TF-IDF
to compute the word weight in each document. The weight of

word wj in document di is denoted as εij :

εij =
nij∑N
k=1 nik

· log N

|{k : wj ∈ dk}|+ 1
(1)

where nij denotes the occurrence number of wj in di.
We then construct Vector Space Model(VSM) for each

document di, denoted as �Vi = {εi1, εi2, ..., εi|di|}. The lexical

similarity is computed as the cosine value with respect to their

vectors. We also make an assumption that the entity with a

longer document length |di| is more valuable and more likely

to propagate tags to its neighbors than the other nodes. Thus,

the lexical similarity of two entities ei and ej is computed as:

lsim(ei,ej) =
�Vi · �Vj∥∥∥�Vi

∥∥∥
∥∥∥ �Vj

∥∥∥
× log

(|dj |
|di| + 1

)
(2)

66

2) User collaboration factor: We observe that the GitHub

users involved in some technical fields are likely to search,

raise or answer the corresponding questions in StackOverflow.

Thus, we assume that the more same users two entities are

linked with, the higher probability they would have the same

knowledge.

Let Uei denote the set of users for ei. We use Jaccard
Similarity to compute the user collaboration similarity of two

entities ei and ej :

usim(ei,ej) =

∣∣Uei

⋂
Uej

∣∣∣∣Uei

⋃
Uej

∣∣ (3)

3) Multi-factors fusion: We compute yij with the combina-

tion of the lexical and the user collaboration factors:

yij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− α) · log (lsim(ei,ej) + 1)

+ α · log (usim(ei,ej) + 1), i �= j

0, i = j

(4)

where α is the weighting parameter to balance two factors. We

evaluate the performance through setting different α values in

our experiments. To prevent self propagation, we set yij = 0
on the diagonal of matrix MT .

4) Matrix postprocessing: Some high frequent tags can

dominate the result during the tag propagation phase. For

example, “javascript” is one of the most popular tags. That

many questions mutually propagate this tag may lead to the

result that all entities are finally tagged by the tag. Thus,

we first sparsify MT through respectively retaining the top-

γ largest values of some question and repository entities in

each row. We then normalize MT to balance the weights for

entities.

y′ij =
yij∑N
k=1 yik

(5)

Target graph construction. We next describe how to construct

a target graph GO. Both of entities and tags are treated

as vertices. Each entity and tag in GO are connected with

an undirected edge, which indicates the dependent relation

between them. We also use matrix MON×|T | to represent GO.

Each row in MO has the same definition as MT , while each

column denotes a distinct tag. The weight of element in MO is

denoted as zij |i≤N,j≤|T |, which represents the possibility that

tag tj needs to be assigned to entity ei. Table II illustrates the

matrix representation of the target graph.

TABLE II: Target matrix MON×|T | .

Tags
t1 ... ti tj ... t|T |

e1 z11 ... z1i z1j ... z1|T |
...
e|R| z|R|1 ... z|R|i z|R|j ... z|R||T |
e|R+1| z|R+1|1 ... z|R+1|i z|R+1|j ... z|R+1||T |
...
eN zN1 ... zNi zNj ... zN|T |

We use two methods to initialize the value zij for target

matrix MO in terms of different entities.

1) Question entities initialization: Considering that ques-

tions in StackOverflow have been tagged by users and the

questions we selected are in high quality, we use these user-

labeled tags to initialize the lower-semi target matrix M⊥
O from

the |R+1|th to Nth row. For a question ei, the weight of each

tag that occurs in Tei is initialized to the corresponding column

in M⊥
O .

Observing that a majority of tags in T occurs with a low

frequency, known as a long tail distribution, we provide a

penalty term to reduce the propagation efficiency of some

frequently-used tags. The formula to compute the weight of

element in lower-semi target matrix M⊥
O is:

zij =
Tei .contain(tj)∣∣Qtj

∣∣β , i ∈
[
|R+ 1|, N

]
(6)

where function contain() outputs 1 when Tei contains tag tj ,

or outputs 0 otherwise.
∣∣Qtj

∣∣ represents the occurrence time

of tag tj in the question set Q, and parameter β is the penalty

degree for tags.

2) Repository entities initialization: Unlike question en-

tities, there is no user-labeled tags existing in repositories.

Considering that most of users prefer to use some representa-

tive words occurring frequently in document to abstract their

questions, we take a simple keyphrase extraction method to

initialize the weight of element in the upper-semi target matrix

M�
O . For each document of a repository entity ei, we compute

the words weight using formula (1). We then sort all words in

descending order by their weight and select the top-k words

as a candidate tag set, which is intersected with T . The weight

of each tag tj existing in the candidate tag set is initialized to

the corresponding value zij .

We also normalize the rows in MO. The formula is close

to the formula (5).

D. Tag Assignment

Subgraph extraction. Graph-based algorithms have high time-

complexity in general. We must enhance their efficiency as

the size of the ETG is too large. Thus, we extract a few

significant entities and tags from the original ETG to construct

a subgraph, on which our algorithm can be applied efficiently

without sacrificing the effectiveness. For this purpose, we

present a User-Entity Graph (UEG), in which the entities in

R∪Q and users in U are treated as nodes. The entity e ∈ {r, q}
and user u are connected by edges if u ∈ Ui|i∈{r,q}. Figure

5(a) presents an example of an original UEG.

The subgraph construction starts with a set of good can-

didate question entities. Then UEG is expanded by adding

repository entities connected to the included entities with

edges. The main activities include question filter and reposi-

tory expansion.

1) Question filter: We first select some good candidate

question entities, each of which satisfies the minimal degree

dr and document length dl. The satisfied question entity is

put into the subgraph with its connected user nodes. Then we

67

(a) Original UEG. (b) Question filter.

(c) Repository expansion ω1. (d) Repository expansion ω2.

question repo user

Fig. 5: Process of Subgraph Construction.

get a reduced question set and user set. Figure 5(b) shows the

result after this step when dr = 3 (dl is not considered in this

example). The result is also highlighted in Figure 5(a).

2) Repository expansion: We use the existing question

entities to expand repository entities. Repository adding

is an iterative process, whose iteration time is denoted as

ω. In this step, repository set and user set are updated

at each iteration ωi, denoted as Ri and U i. Let the user

and repository set in subgraph be U0 and R0 = φ at the

start, respectively. During each iteration ωi, the repository

entity r is added to the Ri if at least one of its connected

users exists in U i−1. Meanwhile, users existing in Ur

but not in U i−1 are added to U i. Figures 5(c) and 5(d)

show the iterative process of expanding repositories when

ω = 2. The new nodes added in each iteration are highlighted.

Tag propagation. Inspired by the idea of random walk with

restart, we apply an iterative algorithm to make tag propaga-

tion. A random walk with restart is a stochastic process, result-

ing in a probability distribution over the vertices corresponding

to the likelihood those vertices are visited. This probability can

be interpreted as the relatedness between nodes in the graph.

The random walk starts with an initial distribution over the

nodes in the graph, propagating the distribution to adjacent

vertices proportionally, until convergence.

The element of MO is interpreted to be the probability that

tag is annotated to the entity, which is iteratively updated in

the algorithm. We respectively denote the calculation result of

MO and its element value zij at tth iteration as MO
t and zij

t.

Thus, the value zij
t+1 in target matrix is computed as:

zij
t+1 =

∑
ei∈out(ek)

yik · zkjt (7)

where out(ek) is a function. It returns a set of entities that the

entity ek points to.

For guaranteeing convergence, we incorporate a random

restart probability θ in the initial target matrix MO as cus-

tomary. Formally, the random walk model can be modeled as:

MO
t+1 = θ ·MTMO

t + (1− θ) ·MO (8)

When a random walk process converges to a stationary

state, we obtain a stationary distribution — a tag probability

distribution for entities in target matrix MO
t. The process is

converged when each element in MO
t satisfies the condition:

∣∣∣∣∣
zij

t − zij
t−1

zijt−1

∣∣∣∣∣ ≤ δ, i ∈ [1, N], j ∈ [1, |T |] (9)

Since a column corresponds to a distinct tag tj and a row

corresponds to a repository entity ei in M�
O

t
, we get the top-k

columns with largest values zij
t for each row to select several

tags for each repository.

IV. GRETA-BASED ENGINE IMPLEMENTATION

A. Engine Overview

Developers must spend much time on searching a repository

when they have some specific requirements. So we design an

application to search repository by employing assigned tags.

The search engine takes account of not only explicit repository

description, but also latent software characteristics, represented

by tags.

For this purpose, we use a software programming taxono-

my4 built with tags from StackOverflow [26]. Taxonomy is a

kind of simplified knowledge base, which omits many compli-

cated semantic relations between nodes. Its structure is a multi-

rooted tree, in which nodes represent the concepts, and edges

provide a hyponymy relation with a confidence coefficient.

Each node has one parent node (except the root nodes) and

one or more child nodes. For example, tag “ide” has a child

node “eclipse” in the taxonomy, which means “ide” subsumes

“eclipse”.

There are two main algorithms in our search engine. One is

for query expansion and the other for repository ranking. We

next describe the two algorithms.

B. Query Expansion

We expand the query through adding some terms that are

relevant with the original one. The algorithm takes a phrase

or sentence S and a maximum traversal layer number L as

input, and outputs an expanded vector Sq . Each term in Sq

has a relevant weight vi.
For each term in S, it is treated as an important term if it

occurs in T . If so, its neighboring nodes in taxonomy such

as parent, brothers and children are added into Sq , by multi-

plying some weakening coefficients γp, γc and a confidence

coefficient c(si, sj) to its relevant weight. Otherwise, the term

is added as a normal term by multiplying γo if it is not a

stopword. The detailed process of Algorithm 1 is as follows.

4The data is available at http://datahub.io/dataset/software-zhishi-schema.
There is a website for demonstration: http://swenet.me

68

Algorithm 1: Query Expansion
Input: S = {s1, s2, s3, ..., sm}, L
Output: Sq = {(s∗1, v1), (s∗2, v2), ..., (s∗n, vn)}
1: Initialize Sq = φ, γp = 0.5, γc = 0.8, γo = 0.9
2: for all si ∈ S do
3: if si ∈ T then
4: Sq ← Add (si, 1)
5: sp ← GetParent(si)
6: if sp exists then
7: Sq ← Add (sp, c(si,sp) · γp)
8: end if
9: for all sj ∈ GetBrothers(si) do

10: Sq ← Add (sj , c(si,sp) · c(sj ,sp) · γp · γc)
11: end for
12: Nc ← Children nodes of si in L Layers
13: for all sj ∈ Nc do
14: l = Layer number from sj to si
15: Sq ← Add (sj , c(si,sj) · γcl)
16: end for
17: else if si /∈ Stopwords
18: Sq ← Add (si, γo)
19: end if
20: end for
21: return Sq

C. Repository Ranking

We use the weighted query to compute a relatedness score

for each repository, and also rank them. The details are

depicted in Algorithm 2.

We first build two inverted tables Tw and Tt: one is word-

based and the other is tag-based. Tw includes all the words

occurring in the repository documents. Each word wi has

a corresponding set Gi, which includes the repositories that

contain the word. Each element in set Gi is a key-value pair

such as (qj , αij), in which αij represents the weight of wi in

qj . Similar to Tw, Tt includes all the tags annotated by users.

Each tag also has a set Hi including all repositories annotated

with the tag. For an expanded weighted query input Sq , the

relatedness between query and repositories are calculated from

three aspects.

1) Name-based: We consider not only the edit distance
(dist()) but also their mutual coverage (cover()) between

repository name and query string.

2) Lexical-based: We increase the weight of the reposito-

ries that contain the word occurring in Sq .

3) Characteristic-based: We increase the weight of the

repositories that are annotated by the tag occurring in Sq .

The algorithm ranks the repositories by their relatedness

from the query, and outputs a top-k list of repositories Γ.

V. EVALUATIONS

We evaluate the performance of our approach and compare

it with some existing methods. We also evaluate our search

engine. The results show that (1) both factors contribute to a

positive effect to tag assignment, and (2) GRETA outperforms

the baseline methods in that it achieves up to 35% of F-

Measure. Besides, the GRETA-based search engine gains a

higher NDCG value than the existing one in GitHub, indicating

that the engine is more effective than the engine of GitHub in

searching for repositories using software characteristics.

Algorithm 2: Repository Ranking
Input: Sq = {(s∗1, v1), ..., (s∗n, vn)}, S = {s1, s2, ..., sm}

Tw = {G1, G2, ..., Gm}, where Gi = {(r1, αi1), ..., (rk, αik)}
Tt = {H1, H2, ..., Hl}, where Hi = {(r1, βi1), ..., (rk, βik)}

Output: Repository List Γ
1: Initialize Γ = {r1, r2, ..., rn}, Scores = {0, ..., 0}
2: for all rj ∈ R do
3: star(rj) = 1 + log

(
1 +

√
1 + StarGazer(rj)

)

4: nj ← GetRepoName(rj).splitToTerms()
5: for all njk ∈ nj do
6: for all s∗i ∈ Sq do
7: if njk.cover(s

∗
i) then

8: coversimik = |s∗i | / [|njk| · (|Q|+ 1)]
9: else if s∗i .cover(njk) then

10: coversimik = |njk| / [|s∗i | · (|Q|+ 1)]
11: end if
12: end for
13: end for
14: titleSim(j) = (

∑
coversimik + 1) / [dist(nj , S) + 1]

15: end for
16: for all s∗i ∈ Sq do
17: for all Gk ∈ Tw do
18: if s∗i equals Gk then
19: for all rj ∈ Gk do
20: textSim(j) + = vi · αkj ∗ star(rj)
21: end for
22: end if
23: end for
24: for all Hk ∈ Tt do
25: if s∗i equals Hk then
26: for all rj ∈ Hk do
27: tagSim(j) + = vi · βkj · ∣∣s∗i .splitToTerms()

∣∣
28: end for
29: end if
30: end for
31: end for
32: for all rj ∈ R do
33: score = star(j) ·∏ [factorSim(j) + 1],←↩

factorSim ∈ {titleSim, textSim, tagSim}
34: Γ ← Add (rj , score)
35: end for
36: Rank Γ in descending order and select top-k
37: return Γ

A. Experimental Settings

We first present our experimental data set and some essential

parameter settings. We experimentally set dr and dl to 8 and

60, respectively, when extracting a subgraph, and iteration time

ω is set to 5. Thus, we get a subgraph whose statistics are

summarized in Table III.

TABLE III: Statistics of subgraph.

Description Value
Repository Entity Number 9,163
Question Entity Number 10,724
Tag Number 4,641

In the subgraph, the average document length of all en-

tities is 261.49. Each of them has on average 7.36 relative

users. The tag frequency distribution follows a power-law like

distribution. Most tags are used in few times by few users,

while a small number of tags are extremely popular and

have been used to annotate many questions. Each question

is annotated with 3.39 tags on average. 20.6% of questions

are annotated by more than 4 tags. A very small number of

69

0.00%

10.00%

20.00%

30.00%

40.00%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-
M

ea
su

re

α Value

β=0.5 β=0.6 β=0.7 β=0.8 β=0.9

(a) γ = 0.01.

0.00%

10.00%

20.00%

30.00%

40.00%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-
M

ea
su

re

α Value

β=0.5 β=0.6 β=0.7 β=0.8 β=0.9

(b) γ = 0.05.

0.00%

10.00%

20.00%

30.00%

40.00%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-
M

ea
su

re

α Value

β=0.5 β=0.6 β=0.7 β=0.8 β=0.9

(c) γ = 0.10.

Fig. 6: Performance with different parameter values.

questions are annotated with one tags. The remaining questions

are annotated with 2∼4 tags.

We follow the standard convention by setting random restart

probability θ = 0.85 and convergence threshold δ = 0.001 [27].

B. Compared Methods

Since there is no existing mature tool to perform the

tag assignment task in cross-communities, we compare

four general methods with our approach. The four baseline

methods belong to two categories, i.e., unsupervised methods

and supervised ones.

1) Unsupervised Methods
Term Frequency-inverse Document Frequency. We compute

the word weight for each repository document and select the

top-ranked words.

Latent Dirichlet Allocation (LDA) [28]. We use repository

documents to train a LDA model and select the top-3 topics

for each repository. The top-ranked words contained in topics

are taken as entity tags.

2) Supervised Methods
K-Nearest Neighbors (KNN). We select the k-nearest

neighboring questions for each repository and rank the

corresponding tag weights.

Labeled Latent Dirichlet Allocation (LLDA) [29]. We train a

LLDA model using the questions and tags, and then select the

topics with highest probabilities according to each document’s

topic distribution.

C. Performance Measures

In our evaluation, 200 repositories were randomly selected

from our assignment result. Considering that StackOverflow

users may annotate several tags to one question, we use their

explicit textual materials and latent meaning to manually add

1∼5 tags to these repositories. These user-labeled tags have

been inspected and corrected twice by three researchers.

We use our approach and four baseline methods respectively

to assign a tag set containing 5 distinct tags for each reposi-

tories. In order to reduce the negative impacts caused by the

synonyms or similar tags, we normalize these user-annotated

and automatic assigned tags by removing their hyphens and

version numbers. For example, since the two tags named

“jdk6” and “jdk-1.7” can be normalized to “jdk”, they are

taken as the same tag.

Some metrics for evaluating the accuracy in information re-

trievals (IE) can also be used for tag assignment, for example,

Precision (Λr
P), Recall (Λr

R) and F-Measure (Λr
F). We use

Θr
u to represent the set of the manual tags of repository r and

Θr
g the set of the automatically assigned tags. The metrics are

based on the concepts of True Positives (TP), False Positives

(FP) and False Negatives (FN). The concepts are defined as:

• TP contains tags both in Θr
u and Θr

g .

• FP contains tags in Θr
g but not in Θr

u.

• FN contains tags in Θr
u but not in Θr

g .

Thus, the metric indices can be computed as:

Λr
P =

TP

TP + FP
, Λr

R =
TP

TP + FN
, Λr

F =
2 · Λr

PΛ
r
R

Λr
P + Λr

R

D. Parameters Tuning

There are three parameters that need to be tuned in the

evaluation, including factor weighting value α, tag penalty

degree β and matrix sparsity degree γ. We set different values

and compute an F-Measure to determine these parameters. We

respectively set α from 0 to 1 with a step 0.1, β from 0.5

to 0.9 with a step 0.1, and γ from 0.01 to 0.10 with a step

0.05. Figure 6 shows the tag assignment performance with

different parameter values. From the results, we achieve the

best performance when α = 0.3, β = 0.6 and γ = 0.05.

We then evaluate whether both of two similarity factors

can effectively help assign tags. Note that the performance

of the tag assignment reaches up to 33.41% when α is 0.3.

In particular, the lexical factor reaches more than 25% even

without the user collaboration factor. However, the prediction

works better when it combines the two factors. The result

indicates that both factors are helpful in tag assignment when

they are combined. The result also agrees with our intuition

that each factor may lead to a low performance value when

used independently.

E. Tag Assignment Evaluation

We then compare the performance of GRETA with those

baseline methods. We use the optimal tuned parameter values

70

mentioned above. We compute the F-Measure by setting the

size of the assigned tag set from 1 to 5. Figure 7 shows the

tag assignment performance by different methods.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1 2 3 4 5

F-
M

ea
su

re

Tag Number

TF-IDF KNN LDA LLDA GRETA

Fig. 7: Performance of different methods.

By observing the results shown in Figure 7, we find that

each method shows a progressive trend of performance along

with the increase of the number of assigned tags. However,

when the tag number is greater than 4, most of them start to

decrease.

More specifically, text similarity-based methods performs

better than those topic-based ones. LDA and LLDA cannot

obtain a precision of 20% even when they produce 5 tags

for a repository. Unlike topic-based methods, both KNN

and TF-IDF achieve an acceptable performance value during

evaluation. They reach an value of more than 20% when the

tag number is greater than 4. However, in most cases, GRETA

achieves the best performance, which is about 3% higher than

the best baseline method on average. It indicates that GRETA

can produce some tags that cannot be produced using the other

methods. Thus, we draw out two conclusions: (1) repositories

with high similarity in the text always share similar tags; (2)

users tend to use many words with the most occurrences in

the document as tags.

We also use some statistical metrics to measure the re-

sults. First, we count each method’s distinct tag number

produced in all sampled repositories. We observe that GRETA

produced 249 distinct tags (for example, some tags like

“jekyll”, “jestjs”, “rake”), the highest value among all these

methods. The reason may be that the entities gain some

valuable knowledge from indirected entities by the random

walk. Second, we compare the average occurrence of the top-

20 frequently used tags (i.e., “javascript” , “java” , “c#”) in

StackOverflow between different methods. The result shows

the average occurrence value in GRETA is 21.6, less than the

other methods except LDA, whose value is 18.9. These metrics

show that the tag assignment result of GRETA is more diverse

and produces some tags that are not commonly used by users.

It has the minimal impact from long tail distribution of tags.

F. Engine Evaluation

A good search engine needs to meet the following re-

quirements: The most relevant results should be ranked in

the top positions, and the result of the entire list should be

relevant to the query as much as possible. Thus, we use

NDCG (Normalized Discounted Cumulative Gain) to measure

the performance of our search engine. NDCG is a measure

of ranking quality. It is often used to measure effectiveness

of web search engine algorithms or related applications in

information retrieval.

We generate 10 typical queries, and compare our search

performance against the search engine of GitHub with its

“Best Match” type. Each query returns a list of 10 most rele-

vant repositories. We rate each repository in the list based on

the relevancy between the repository and query, and compute

NDCG value using the formula:

N(n) = Zn

n∑
j=1

2r(j) − 1

log(1 + j)
(10)

where Zn is a normalization term and j the index of a

repository in the list. r(j) returns an integer score ranging

from 1∼5, which reveals the relevancy between repository

and query. The higher the NDCG value, the better the search

performance is.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D
CG

Va
lu

e

Query String
GitHub(Best Match)

GRETA-based

Fig. 8: NDCG value of top-10 repositories.

Figure 8 compares the performance of two engines. In

general, our engine has a higher NDCG value for a majority

of queries. Specifically, when people search for some popular

words such as “java”, “struts2”, “mysql”, both engines have

the similar performance. But when the query contains multiple

software characteristics or a few ones that do not appear in the

repository description, such as “javascript html css”, “project
management”, GRETA-based engine performs better than that

of GitHub.

We also use an example to explain why the performance of

our engine is better than that of GitHub. The GRETA-based

engine returns a repository when searching “apache spark”.

The repository description is “Set of real time algorithms used
by big data streaming platform” and its language is marked

with “Java, Scala”. We note that the relevancy between the

71

repository and the query is high. However, GitHub’s search

engine does not return this repository, as the query does not

appear as any part of its name or description. The reason

why our engine can return this repository is that a tag

named “apache-spark” has been assigned to this repository

by GRETA.

The evaluation results show that some latent software

characteristics actually exist in repositories, which are not

described explicitly in text but searched by users. Moreover,

GRETA-based engine works more effectively than GitHub

when searching for repositories using software characteristics.

VI. CONCLUSION AND FUTURE WORK

GRETA is a novel graph-based approach to employing

cross-community resources to assign tags to GitHub repos-

itories. It constructs an ETG for GitHub using the domain

knowledge from StackOverflow, and then uses an iterative

random walk algorithm on ETG to tag repositories. We have

implemented GRETA and also designed a GRETA-based

search engine for searching for repositories in GitHub. The

evaluation results show that GRETA outperforms four baseline

methods and the search engine is more precise in searching

repositories than the existing search engine in GitHub.

As future work, we plan to study how to assign tags for

describing different respects of the GitHub repository. This

work may enhance the capability of current tag system. Also,

we plan to assign tags for users by analyzing their historical

experience and community behaviors. The user-based tag

system can be enriched by user technical expertise abilities

in the community.

ACKNOWLEDGEMENT

This research is supported by 973 Program in China (Grant

No. 2015CB352203) and National Natural Science Foundation

of China (Grant No. 61472242, 61572312). Yuting Chen is

also partially supported by Science and Technology Commis-

sion of Shanghai Municipalitys Innovation Action Plan (No.

15DZ1100305).

REFERENCES

[1] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
ghtorrent: Github data on demand,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, pp. 384–387, ACM, 2014.

[2] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Dept. of Informatics, Aristotle University of Thessaloniki, Greece, 2006.

[3] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” in
Data mining and knowledge discovery handbook, pp. 667–685, Springer,
2010.

[4] G.-R. Xue, D. Xing, Q. Yang, and Y. Yu, “Deep classification in large-
scale text hierarchies,” in Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval, pp. 619–626, ACM, 2008.

[5] O. Madani, M. Connor, and W. Greiner, “Learning when concepts
abound,” The Journal of Machine Learning Research, vol. 10, pp. 2571–
2613, 2009.

[6] P. Turney, “Learning to extract keyphrases from text,” National Research
Council Canada, Institute for Information Technology, Technical Report
ERB-1057., 1999.

[7] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, and C. G. Nevill-
Manning, “Domain-specific keyphrase extraction,” in Proceedings of
16th International Joint Conference on Artificial Intelligence, pp. 668–
673, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[8] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-
Manning, “Kea: Practical automatic keyphrase extraction,” in Proceed-
ings of the fourth ACM conference on Digital libraries, pp. 254–255,
ACM, 1999.

[9] W.-t. Yih, J. Goodman, and V. R. Carvalho, “Finding advertising
keywords on web pages,” in Proceedings of the 15th international
conference on World Wide Web, pp. 213–222, ACM, 2006.

[10] S. N. Kim and M.-Y. Kan, “Re-examining automatic keyphrase extrac-
tion approaches in scientific articles,” in Proceedings of the workshop
on multiword expressions: Identification, interpretation, disambiguation
and applications, pp. 9–16, Association for Computational Linguistics,
2009.

[11] X. Jiang, Y. Hu, and H. Li, “A ranking approach to keyphrase extraction,”
in Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pp. 756–757, ACM,
2009.

[12] R. Mihalcea and P. Tarau, “Textrank: Bringing order into texts,” in
Proceedings of EMNLP, pp. 404–411, 2004.

[13] X. Wan and J. Xiao, “Single document keyphrase extraction using
neighborhood knowledge.,” in AAAI, vol. 8, pp. 855–860, 2008.

[14] Z. Liu, P. Li, Y. Zheng, and M. Sun, “Clustering to find exemplar terms
for keyphrase extraction,” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 1-Volume
1, pp. 257–266, Association for Computational Linguistics, 2009.

[15] M. Grineva, M. Grinev, and D. Lizorkin, “Extracting key terms from
noisy and multitheme documents,” in Proceedings of the 18th interna-
tional conference on World wide web, pp. 661–670, ACM, 2009.

[16] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart
and its applications,” 2006.

[17] P. D. Turney, “Learning algorithms for keyphrase extraction,” Informa-
tion Retrieval, vol. 2, no. 4, pp. 303–336, 2000.

[18] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: an
enhanced tag recommendation system for software information sites,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pp. 291–300, IEEE, 2014.

[19] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, pp. 287–296, IEEE Press, 2013.

[20] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging,” in Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on, pp. 604–607, IEEE, 2012.

[21] F. Crestani, “Application of spreading activation techniques in informa-
tion retrieval,” Artificial Intelligence Review, vol. 11, no. 6, pp. 453–482,
1997.

[22] W. Mo, B. Shen, Y. Chen, and J. Zhu, “Tbil: A tagging-based approach
to identity linkage across software communities,” in 22st Asia-Pacific
Software Engineering Conference, APSEC 2015, Volume 1: Research
Papers, pp. 56–63, IEEE, 2015.

[23] Z. Ma, A. Sun, Q. Yuan, and G. Cong, “Tagging your tweets: A
probabilistic modeling of hashtag annotation in twitter,” in Proceedings
of the 23rd ACM International Conference on Conference on Information
and Knowledge Management, pp. 999–1008, ACM, 2014.

[24] Z. Ding, X. Qiu, Q. Zhang, and X. Huang, “Learning topical translation
model for microblog hashtag suggestion,” in Proceedings of the Twenty-
Third international joint conference on Artificial Intelligence, pp. 2078–
2084, AAAI Press, 2013.

[25] T. H. Haveliwala, “Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 15, no. 4, pp. 784–796, 2003.

[26] J. Zhu, B. Shen, X. Cai, and H. Wang, “Building a large-scale software
programming taxonomy from stackoverflow,” in The 27th Internation-
al Conference on Software Engineering and Knowledge Engineering,
pp. 391–396, 2015.

[27] Z. Guo and D. Barbosa, “Robust entity linking via random walks,” in
Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pp. 499–508, ACM, 2014.

[28] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[29] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning, “Labeled lda: A
supervised topic model for credit attribution in multi-labeled corpora,”
in Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1-Volume 1, pp. 248–256, Association for
Computational Linguistics, 2009.

72

