
How do Programmers Maintain Concurrent Code

Feiyue Yu, Hao Zhong, Beijun Shen
Department of Computer Science, Shanghai Jiao Tong University, China

{yufeiyue, zhonghao, bjshen}@sjtu.edu.cn

Abstract—Concurrent programming is pervasive in nowadays
software development. Many programmers believe that concur-
rent programming is difficult, and maintaining concurrency code
is error-prone. Although researchers have conducted empirical
studies to understand concurrent programming, they still rarely
study how programmers maintain concurrent code. To the best of
our knowledge, only a recent study explored the modifications on
critical sections, and many related questions are still open. In this
paper, we conduct an empirical study to explore how program-
mers maintain concurrent code. We analyze more concurrency-
related commits and explore more issues such as the change
patterns of maintaining concurrent code than the previous study.
We summarize five change patterns according to our analysis on
696 concurrency-related commits. We apply our change patterns
to three open source projects, and synthesize three pull requests.
Until now, two of them have been accepted. Our results can be
useful for programmers to maintain concurrent code and for
researchers to implement treating techniques.

I. INTRODUCTION

Many practitioners and researchers believe that the software

maintenance phase is one of the most expensive phases, in the

life cycle of a software system. Some reports (e.g., [1]) claim

that the software maintenance phase accounts for almost 80%

of the whole budget. With the maintenance of software, many

revision histories are accumulated [3]. Based on such revision

histories, researchers have conducted various empirical studies

to understand how programmers maintain code (e.g., evolution

of design patterns [2], fine-grained modifications [9], and the

evolution of APIs [14]). These empirical studies deepen our

understanding on software maintenance, and provide valuable

insights on how to maintain code in future development.

In recent years, to fully leverage the potential of multi-

core CPUs, concurrent programming has become increasingly

popular [18]. For example, Pinto et al. [18] investigated 2,227

projects, and their results show that more than 75% of these

projects employ some concurrency control mechanism. Despite

of its popularity, many programmers find that concurrent

programming is difficult [15], and often introduce relevant

bugs in their code [13]. Thorough empirical studies on how

programmers maintain such code are needed. However, this

topic is still rarely explored. To the best of our knowledge, only

a recent study [10] was conducted to understand how program-

mers maintain concurrent code. Although the study is insightful

and explores many aspects of concurrent programming, it is

still incomplete. Their study sampled only 25 concurrency-

related commits, and focuses on limited topics such as over

synchronization and how concurrency bugs originate. As a

result, many relevant questions are still open. For example,

are there any patterns, when programmers maintain concurrent

code? Indeed, such patterns are useful for programmers when

they maintain code. For example, Santos et al. [20] have

explored the change patterns during software maintenance, and

their results show that extracted change patterns can be applied

to new code locations. However, their study does not touch the

change patterns of concurrent code. A more detailed analysis

can have the following benefits:

Benefit 1. The results can deepen the knowledge on how to

maintain concurrent code. Due to the complexity of concurrent

programming, we find that even experienced developers can

be confused when they maintain relevant code. For example,

Mark Thomas is a member of the Apache Tomcat Project

Management Committee1, and senior software engineer at the

Covalent division of SpringSource2. He contributed more than

10,000 commits to Tomcat. In a commit message, he left the

complaint as follow:

1 Threading / initialisation issues. Not all were valid.
Make them volatile anyway so FindBugs doesn’t
complain.

In this example, we find that even experienced programmers

can have problems in understanding their own code changes,

when they maintain concurrent code. Our results can resolve

such confusions.

Benefit 2. The results can be useful to improve existing tools.

For example, Meng et al. [16] proposed an approach that

applies changes systematically based on a given example. With

extensions, it can be feasible to apply our extract change

patterns to update concurrent code.

However, to fulfill the above benefits, we have to overcome

the following challenges:

Challenge 1. To ensure the reliability of our result, we have

to collect many code changes that are related to concurrent

programming. It is tedious to manually collect many related

code changes for analysis. Tian et al. [21] worked on a similar

research problem. They proposed an approach that identifies

bug fixes from commits. Their results show that even advanced

techniques can fail to identify many desirable commits.

Challenge 2. The changes on concurrent code can be compli-

cated. A recent study [22] showed that only 38% commits are

compilable. To analyze code that is not compilable, researchers

typically use partial-code tools such as PPA [6] and ChangeDis-

tiller [8] to analyze commits. However, as partial programs lose

information, partial-code tools are imprecise and typically do

not support advanced analysis. Furthermore, as we do not know

1http://tomcat.apache.org/whoweare.html
2https://sourceforge.net/projects/covalent

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.71

594

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.71

594

what patterns can be followed, it is difficult to implement an

automatic tool. As a result, it is inevitable to take much human

effort when we conduct the empirical study.

In this paper, we conduct an empirical study on 98,325 com-

mits that are collected from six popular open-source projects.

To reduce the effort of manual inspection, we implement a set

of tools that collect and identify concurrency-related commits

automatically (see Section II-C for details). With its support,

in total, we identified 11,868 concurrency-related commits, and

manually analyzed 696 such commits. Based on our results, this

paper makes the following contributions:

• The first analysis on the change patterns of maintaining

concurrent programs. Based on our results, we summarize

five change patterns, and we present their examples for

explanation. We find that following such change patterns,

during software maintenance, programmers can modify

concurrent code to repair bugs, improve performance, and

change functions of their code. Furthermore, we find that

maintaining concurrent code is not a one-direction mi-

gration. Due to various considerations, programmers can

apply seemingly contradictory changes, and even revert

their changes. Sometimes, programmers can even make

changes, before they fully understand the consequences

of their changes.

• An application of our change patterns in real code. In

particular, we search the latest versions of three projects

for chances to apply our change patterns, and synthesize

three pull requests according to our change patterns. Two

of our pull requests are already confirmed and accepted by

their programmers. However, our results also reveal that

it needs much experience and understanding to leverage

our change patterns.

II. METHODOLOGY

A. Research questions

To understand how concurrent code is maintained, in this

study, we focus on the following research questions:

RQ1. What change patterns are followed when programmers

maintain concurrent code?

In this paper, we define change patterns as abstract de-

scription of similar code changes that appear many times in

code revision history. In our study, we summarize concurrency-

related commits into five change patterns, and present examples

to explain our change patterns (Section III-A).

RQ2. How useful are our extracted change patterns, when

programmers maintain concurrent code?

To assess the usefulness of our extracted change patterns, we

search matching code and manually apply our change patterns

in three pull requests. Two of them are accepted by their

programmers (Section III-B).

B. Dataset

In this study, we collected commits from six popular and

active Apache projects. Table I shows the details of our data

set. These projects cover various types of projects such as dis-

tributed computing, web server, database, information retrieval,

TABLE I: Selected Commits
Project #Commits #Concurrency #Manual
Hadoop 14,930 2,739 64
Tomcat 17,731 1,963 207

Cassandra 21,982 1,904 78
Lucene-solr 26,152 2,375 99

Netty 7,759 1,387 210
Flink 9,771 1,500 38
Total 98,325 11,868 696

and network. Column “#Commits” lists number of commits.

Column “#Concurrency” lists number of concurrency-related

commits. From these concurrency-related commits, we selected

a subset for manual analysis. Column “#Manual” lists number

of our selected commits. We checked out all the commits in

December 2016.

C. Study mechanism

As introduced in Section I, it is quite difficult to implement

a single tool to automate our analysis. Instead, we employ

and implement a set of tools to reduce the analysis effort.

Inevitably, we have to introduce manual analysis in RQ1. Our

study mechanism has the following steps:

1) Step 1. Collecting commits: All the projects in our

study use Git as their version control system. We implement

a tool to check out all their commits. A typical commit log

contains a commit id, an author name, the commit date, and

a message. Once we get a commit id, our tool uses the git

show command to list details, and then uses the textual diff

command to produce its change hunks.

2) Step 2. Identifying commits for the follow-up analysis:
From collected commits, the second step is to extract commits

that are related to concurrent code. Here, we consider that

a commit is a concurrency-related commit, if the commit

involves synchronization, thread, or concurrent API classes. A

commit has a commit message that often explains which files

are modified and why programmers make such modifications.

Our tool builds queries to search for concurrency-related com-

mits. The built queries contain concurrency-related keywords.

We choose 96 keywords such as synchronized, volatile,

and concurrent API class names. The full list can be found

in our project homepage: https://github.com/qwordy/Research.

However, this selector selects 11,868 commits that are too many

for manual analysis. We selected a subset from them for manual

analysis by checking whether a commit message contains

concurrency-related keywords. The first selector selects 11,868

commits from 98,325 commits. The second selector selects 561

commits from the 11,868 commits that are output of the first

selector. The size of the final selected set is 561. The precision

is 0.67 based on a manual inspection.

The textual matching method can lose some useful commits.

We use a machine learning method to select concurrency-

related commits from the 11,868 commits as supplements. Re-

searchers have explored related problems. For example, Tian et
al. [21] proposed an approach that identifies bug fixing patches

with classification techniques. Motivated by their approach, we

train a classifier to predict concurrency-related commits. Our

tool analyzes change hunks that are produced by the diff

595595

TABLE II: Features of Data
Feature Explanation
msgKey Number of keywords in commit message

file Number of files in a commit
hunk Number of hunks in a commit

lineAdd Number of added lines in a commit
lineRemove Number of removed lines in a commit

lineSub lineAdd - lineRemove
lineSum lineAdd + lineRemove
keyAdd Number of added keywords in a commit

keyRemove Number of removed keywords in a commit
keySub keyAdd - keyRemove
keySum keyAdd + keyRemove

contextKey Number of keywords in context code

command, and extracts code features. As shown in Table II,

our tool extracts 12 features from each commit. The first

column shows feature names, and the second column shows

explanations. The keywords are the same as the concurrency-

related keywords used in the previous paragragh. Our tool

employs the SVM [5] algorithm to identify concurrency-related

commits. In particular, we use LIBSVM [4]. We randomly

select 48 commits as a training set. We build features of them

and label them. The 48 commits have 15 positive instances and

35 negative ones. Then we train a model and use it to classify

commits. It selects 135 positive commits. The precision is 0.74

based on a manual inspection. The accurate recall is unavailable

because our goal is to predict these positive instances. We

selected 696 commits for manual analysis in total.

3) Step 3. Analyzing commits according to different re-
search questions: We then conduct detailed analysis according

to our research questions.

RQ1. Determining change patterns. To explore this re-

search question, we analyzed each selected commit for their

change patterns. For each commit, we first read the message

and the corresponding issue to understand why programmers

make the commit. After that, we scan change hunks to un-

derstand the details. Here, we classify concurrency-related

commits into different categories, mainly according to our

observed code changes such as the modifications on code

elements, parallel libraries, and control flows.

RQ2. Exploring the usefulness of our change patterns.
We prepare a set of keywords for each change pattern, and

search Github for code where the pattern can apply. For

example, we use synchronized, put or get as keywords

to search code pieces that manually handle synchronization of

collections. We find numerous code pieces in the search results.

We manually check the code and decide whether our patterns

apply on such code. If it is, we fork the project; make our

changes; and submit our pull request.

III. RESULTS

A. RQ1. Change patterns

Table III shows an overview of our extracted change patterns.

Each row is an example of a certain change pattern. The first

column is the sequence number of examples. The “Source

Code” column shows the concrete source code of examples.

The left is the original code and the right is the modified code.

We align the corresponding statements. We use different colors

to mark modified lines. The “Simplified Code” column shows

the simplified code of the source code. They are short as they

ignore the specific statements.

1. Changing lock types. It is feasible to lock resources

with different mechanisms. For example, Java has a keyword,

synchronized. The keyword can lock a block of code lines.

With the keyword, programmers do not have to acquire and

release resources explicitly. Alternatively, programmers can

explicitly lock resources with APIs (e.g., ReentrantLock).

Explicit locks offer more features than the synchronized

keyword does. As another example, besides exclusive locks,

programmers can use shared locks, that allow multiple threads

to hold the lock in certain conditions.

We find that programmers can replace the synchronized

keyword with parallel API classes. For example, the first

item of Table III comes from YARN-58253. To improve the

performance, programmers replaced the synchronized with

the getReadLock method. The method returns a shared lock,

so multiple threads can read the query simultaneously.

Meanwhile, we find that programmers can replace parallel

API classes with the synchronized keyword. For example,

the second item of Table III comes from an unreported Tomcat

bug. We find it through our SVM classifier.

1 A ReadWriteLock cannot be used to guard a WeakHashMap.
The WeakHashMap may modify itself on get(), as it
processes the reference queue of items removed by
GC. Either a plain old lock / synchronization is
needed, or some other solution.

As the above message explains, a developer complained

that the ReadWriteLock method does not guard the

WeakHashMap variable, since the get() method can modify

the WeakHashMap variable, and the modification can bypass

the lock. In this example, programmers fixed the problem by

replacing the methods with the synchronized keyword.

2. Changing locked variables. A program needs to lock vari-

ables before it enters critical section bodies. During software

maintenance, programmers can change locked variables, and

we find that the main purpose is to repair bugs. For example,

the third item of Table III comes from FLINK-1419. This

bug complains that DistributedCache does not preserve

files for subsequent operations. Based on its discussions, we

understand that in the buggy file, programmers lock count,

while they shall lock lock. To fully fix the bug, programmers

also modified the critical sections and the finally clause.

As another example, when repairing bugs, programmers can

add new locks. For example, the fourth item of Table III comes

from Tomcat4. It includes the following message:

1 Reported by RV-Predict (a dynamic race detector) when
running the test suite: Data race on ...)

The data race indicates that the isAccessed() is not

locked, so programmers add the synchronized keyword to

allow locking on the method.

3https://issues.apache.org/jira/browse/YARN-5825 The URLs of Apache
issues can be built by replacing the above URL with their issue number.

4https://bz.apache.org/bugzilla/show bug.cgi?id=58386 The URLs of Tom-
cat issues can be built by replacing the above URL with their issue number.

596596

TABLE III: Change patterns

#
Source Code Simplified Code

Original Modified Original Modified

1

LeafQueue leafQueue = ...;
-synchronized (leafQueue) {

57 LOC
}

LeafQueue leafQueue = ...;
+try { leafQueue.getReadLock().lock();

57 LOC
+} finally {
+ leafQueue.getReadLock().unlock();}

synchronized (obj)
{
...

}

try {obj.lock();
...

} finally {
obj.unlock();

}

2

-Lock readlock =
- classLoaderContainerMapLock.readLock();
-try { readlock.lock();
- result = classLoaderContainerMap.get(tccl);
-} finally {readlock.unlock();}
-if (result == null) { Lock writelock =
- classLoaderContainerMapLock.writeLock();
- try { writeLock.lock();

result = classLoaderContainerMap.get(tccl);
if (result == null) {

result = new ServerContainerImpl();
classLoaderContainerMap.put(tccl,result);}

- } finally {writeLock.unlock();}

+synchronized (classLoaderContainerMapLock) {

result = classLoaderContainerMap.get(tccl);
if (result == null) {
result = new ServerContainerImpl();
classLoaderContainerMap.put(tccl,result);}

}

try {
readLock.lock();
read operations

} finally {
readLock.unlock();

}
try {
writeLock.lock();
write operations

} finally {
writeLock.unlock();
}

synchronized {
all operations

}

3

static final Object lock = new Object();
Map<...> count = new HashMap<>();
-synchronized (count) {
- Pair<Job, String> key =
- new ImmutablePair<>(jobID, name);

- if (count.containsKey(key)) {
- count.put(key, count.get(key) + 1);
- } else {count.put(key, 1);}}

static final Object lock = new Object();
Map<...> count = new HashMap<>();
+synchronized(lock)
+ if (!jobCounts.containsKey(jobID)) {
+ jobCounts.put(jobID, new HashMap<>());}
+ Map<...> count = jobCounts.get(jobID);
+ if (count.containsKey(name)) {
+ count.put(name, count.get(name) + 1);
+ } else {count.put(name, 1);}}

synchronized (obj1)
{
...

}

synchronized
(obj2) {
...

}

4
-public boolean isAccessed() {

return this.accessed;}
+public synchronized boolean isAccessed() {

return this.accessed;}
void foo() {...}

synchronized void
foo() {...}

5

synchronized (buffers) { if (...) {

- if (spillWriter != null) {
- spillWriter.close();}

isFinished = true;}}

synchronized (buffers) { if (...) {
isFinished = true;}}

+if (spillWriter != null) {
+ spillWriter.close();}

synchronized(obj)
{
statements1
statements2 }

synchronized(obj)
{
statements2 }

Statements1

6

-synchronized void reset() {

map.clear();
members = EMPTY_MEMBERS;}

+final Object membersLock = new Object();
+void reset() { synchronized (membersLock) {

map.clear();
members = EMPTY_MEMBERS;}}

synchronized void
foo() {
... }

void foo() {
synchronized

(obj) {
... }}

7

-synchronized void enqueue(final long seqno,
final boolean lastPacketInBlock,
final long offsetInBlock) {

- if (running) {
final Packet p = new Packet(...);
LOG.debug(...);

ackQueue.addLast(p); notifyAll();}}

+void enqueue(final long seqno,
final boolean lastPacketInBlock,
final long offsetInBlock) {

final Packet p = new Packet(...);
LOG.debug(...);

+ synchronized (this) { if (running) {
ackQueue.addLast(p); notifyAll();}}}

synchronized void
foo(...) {
statements1
statements2

}

statements1
synchronized (obj)
{
statements2

}

8

-Membership membership = null;
public boolean hasMembers() {
if (membership == null) setupMembership();
return membership.hasMembers();}

synchronized void setupMembership() {
if (membership == null) {
membership = new Membership(...);}}

+volatile Membership membership = null;
public boolean hasMembers() {
if (membership == null) setupMembership();
return membership.hasMembers();}

synchronized void setupMembership() {
if (membership == null) {
membership = new Membership(...);}}

T foo; volatile T foo;

9
-volatile int requestCount;

- requestCount++;

+final AtomicInteger requestCount =
+ new AtomicInteger(0);
+ requestCount.incrementAndGet();

volatile T foo; TT foo;

In some other cases, we find that programmers can refine

their locked resources to improve performance. For example,

the sixth item of Table III comes from Tomcat 58382. The

original code locks the instance of a class, but the modified

code locks only the membersLock field.

3. Modifications inside critical section bodies. A critical

section is a code block that is executed, when a thread locks

the corresponding resources. We notice that even modifications

inside critical section bodies can repair concurrency bugs. For

example, the fifth item of Table III comes from FLINK-2384. It

is caused by an implicit lock in the spillWriter.close()

method. As programmers typically do not know such locks

inside APIs, the lock leads to the deadlock. Indeed, we find

that a recent benchmark [11] includes a similar concurrency

bug, and Lin et al. [12] proposed an approach that detects

such implicit locks inside APIs. In this example, programmers

move the spillWriter.close() method outside the critical

section body to resolve the deadlock.

Besides the above example, the majority of modifications

on critical section bodies indicates new functionalities or

refactoring. For example, the seventh item of Table III comes

from HDFS-4200. To reduce the size of a critical section body,

programmers refactor the body into several methods. Indeed,

this issue involves modifications that are related to even more

change patterns (e.g., adding locked variables).

4. Changing the volatile keyword. In Java, the volatile

keyword denotes a variable that must be accessed from main

memory and disables reordering. Although it can improve the

overall performance, races can occur, when multiple threads

read and write volatile variables simultaneously.

597597

We find that programmers can add the volatile keyword to

improve performance. For example, the eighth item of Table III

comes from Tomcat 58392. It reports a data race, and the bug

was repaired by adding the volatile keyword.

Besides adding the keyword, we find that programmers

have to remove the volatile keyword, since they do not

fully understand its meanings. For example, the ninth item of

Table III comes from a Tomcat bug. In particular, programmers

auto-increment a volatile variable, but such an action is not

atomic. In this fix, programmers have to remove the keyword.

5. Replacing self-written code with Parallel APIs. Program-

mers can implement concurrent code by themselves, but later

they realize that it is easier to call APIs that already implement

their functionalities. For example, a previous version of Hadoop

has the following code:

1 private volatile long genstamp;
2 public synchronized long nextStamp() {
3 this.genstamp++;
4 return this.genstamp; }

Later, a programmer realized that it is better to replace

the above code with the AtomicLong class. He reported a

major issue (HDFS-4029). Here, AtomicLong is a thread-safe

version of type long. It allows updating a Long value without

explicit synchronization and it is fast.

1 private volatile long genstamp;
2 public long nextStamp() {
3 return genstamp.incrementAndGet(); }

Besides replacing directly, programmers can replace their

code with parallel APIs that implement similar functions. For

example, the below code comes from LUCENE-2779:

1 protected ... fileMap = new HashMap<...>();
2 public final boolean fileExists(String name) {
3 ensureOpen();
4 RAMFile file;
5 synchronized (this) { file = fileMap.get(name); }
6 return file != null; }

Instead of handling synchronization by themselves, program-

mers replaced the above code with a parallel API:

1 protected ... fileMap = new ConcurrentHashMap<...>();
2 public final boolean fileExists(String name) {
3 ensureOpen();
4 return fileMap.containsKey(name); }

In summary, we identify five types of change patterns in

total. The percentages of their occurrence are 4%, 3.5%, 29%,

34.5% and 29% respectively. First, we find that programmers

can modify parallel keywords and locked variables, and such

modifications are mainly for repairing bugs and improving per-

formance. Second, we notice modifications on critical section

bodies, and such modifications often indicate new functions.

Finally, we notice that self-written code is replaced with corre-

sponding parallel APIs. In most cases, we find that maintaining

concurrent code is not a one-direction migration.

B. RQ2. The usefulness of our change patterns.

Once developers know and understand these change patterns

well in concurrent programming, they can refer to these change

patterns to see whether one of them matches the condition

when they are writing or maintaining concurrent code and then

make the change. However, it is impractical for us to read vast

concurrent code and find examples to apply the change patterns.

Instead, we use a keyword search method to find possible code

context to apply the change patterns.
In total, we made three pull requests. We made the first pull

request on Schmince-2. The original code is as follow:

1 public class DRandom {
2 private ... random = new ThreadLocal<Random>() {
3 protected Random initialValue() {
4 return new Random();}};
5 public static Random get() {return random.get();}}

The above code implements a class that generates ran-

dom values for multiple threads. We find that J2SE provides

the ThreadLocalRandom class that implements the identical

function. According to our fifth change pattern, we made a pull

request to replace the above code with the corresponding API.

This pull request is already confirmed.
We made the second pull request on UnifiedEmail. It has the

following code:

1 static NMap map = null;
2 static synchronized NMap getNMap(Context context) {
3 if (map == null) { map = new NMap(); ...; }
4 return map; }

If the map field is null, the above method creates a new map

and assigns the new map to the field. To allow multiple threads

to call the methods, programmers add the synchronized

keyword to the method. We believe that when map is not null,

the lock is unnecessary, since it does not change the field.

According to our second change pattern, we made the following

modification to synchronize only the lines that modify the field:

1 static volatile NMap map = null;
2 static NMap getNMap(Context context) {
3 if (map == null) {
4 synchronized (NotificationUtils.class) {
5 if (map == null) { map = new NMap(); ...; }}}
6 return map; }

The owner of the project deleted our pull request. We

checked the pull requests of the project and found that there

is no open or closed pull request. This project has more than

19,000 commits. It is possible that it has a strict policy of

introducing external source code.
We made the third pull request on Spider4java. It is a Java

web crawler. It has the following code:

1 public class Counter {
2 protected int count;
3 public Counter() { count = 0; }
4 public synchronized void increment() {count=count+1;}
5 public synchronized int getValue() {return count;}}

The above class implements a counter for multiple threads.

As J2SE provides the identical API, AtomicInteger. Our pull

request has been accepted, and its code is as follow:

1 public class Counter {
2 protected AtomicInteger count;
3 public Counter() { count = new AtomicInteger(); }
4 public void increment() { count.getAndIncrement(); }
5 public int getValue() { return count.get(); }}

In summary, our results show that our change patterns are

repetitive in future maintenance, and programmers confirmed

that our change patterns are useful. However, our results also

reveal that it needs much programming experience to fully

unleash the potential of our change patterns.

598598

C. Threats to Validity

The threats to internal validity include that our tool can omit

some concurrency commits, although we have used both the

query-based search and a classifier in our study. We did not

conduct a thorough evaluation on our classifier. The threat

could be reduced by more advanced identification techniques.

The threats to internal validity also include obsolete commits.

These commits may present obsolete or even wrong usages. To

reduce the threat, in our study, we prefer to recent commits.

The threats to external validity include our selected projects and

programming language. The number of the projects we select

is small. They are all Java-based Apache projects. The threat

could be reduced by introducing more projects and languages

in future work.

IV. RELATED WORK

Empirical studies on concurrent programming. In literature,

researchers have conducted various empirical studies to under-

stand concurrent programming. Pinto et al. [18] conducted a

large scale study on the usage of concurrency in Java, and Wu

et al. [23] replicated their study with C++. Okur and Dig [17]

studied how developers use parallel libraries in C#. David et
al. [7] conducted an empirical study to investigate synchroniza-

tion at both hardware and software levels. Sadowski et al. [19]

studied the evolution of data races, and they found that many

data races always exist. Xin et al. [25] conducted an empirical

study on lock usage, and they found that most functions acquire

only a lock. Lu et al. [13] studied characteristics of real world

concurrency bugs. The above approaches do not analyze change

patterns, which are complemented by our study.

Identification of commits. Zhong and Su [26] relied on

simple heuristic to identify bug fixes from commits. Tian et
al. [21] trained a classifier to identify bug fixes based on their

extracted features. Wu et al. [24] built the links between bug

fixes and their reports based their similarity values. The above

approaches focus on identifing bug fixes from commits. In our

study, we implement a tool that identifies concurrency-related

commits, complementing the above approaches.

V. CONCLUSION

Concurrent programming is challenging, and a mistake can

introduce hidden bugs that are difficult to be detected. During

software maintenance, programmers have to handle concurrent

code carefully. Researchers have conducted various empirical

studies to understand concurrent programming. However, how

programmers maintain concurrent code is still rarely studied.

In this paper, we conduct an empirical study to understand the

change patterns and other perspectives of concurrent program-

ming. Based on our analysis results, we summarize five change

patterns. We show that such change patterns are repetitive

in future maintenance, and programmers have confirmed the

usefulness of our extracted patterns.

ACKNOWLEDGEMENT

This research is supported by 973 Program in China (No.

2015CB352203), National Natural Science Foundation of

China (No. 61472242, No. 61572313), and the grant of Science

and Technology Commission of Shanghai Municipality No.

15DZ1100305.

REFERENCES

[1] Y. Ahn, J. Suh, S. Kim, and H. Kim. The software maintenance project
effort estimation model based on function points. Journal of Software
Maintenance and Evolution: Research and Practice, 15(2):71–85, 2003.

[2] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di Penta.
An empirical study on the evolution of design patterns. In ESEC/FSE,
pages 385–394, 2007.

[3] H. Borges. On the popularity of github software. In ICSME, page 618,
2016.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011.

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[6] B. Dagenais and L. J. Hendren. Enabling static analysis for partial Java
programs. In OOPSLA, pages 313–328, 2008.

[7] T. David, R. Guerraoui, and V. Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. In SOSP,
pages 33–48, 2013.

[8] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. Transac-
tions on Software Engineering, 33(11):725–743, 2007.

[9] D. M. German. An empirical study of fine-grained software modifica-
tions. Empirical Software Engineering, 11(3):369–393, 2006.

[10] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu. What change history tells
us about thread synchronization. In ESEC/FSE, pages 426–438, 2015.

[11] Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao. JaConTeBe: A
benchmark suite of real-world Java concurrency bugs. In ASE, pages
178–198, 2015.

[12] Z. Lin, H. Zhong, Y. Chen, and J. Zhao. LockPeeker: detecting latent
locks in Java APIs. In ASE, pages 368–378, 2016.

[13] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In
ASPLOS, pages 329–339, 2008.

[14] T. McDonnell, B. Ray, and M. Kim. An empirical study of API stability
and adoption in the android ecosystem. In ICSM, pages 70–79, 2013.

[15] P. E. McKenney. Is parallel programming hard, and, if so, what can you
do about it? (v2017.01.02a). CoRR, abs/1701.00854, 2017.

[16] N. Meng, M. Kim, and K. S. McKinley. Systematic editing: generating
program transformations from an example. In PLDI, pages 329–342,
2011.

[17] S. Okur and D. Dig. How do developers use parallel libraries? In FSE,
page 54, 2012.

[18] G. Pinto, W. Torres, B. Fernandes, F. C. Filho, and R. S. M. de Barros.
A large-scale study on the usage of java’s concurrent programming
constructs. Journal of Systems and Software, 106:59–81, 2015.

[19] C. Sadowski, J. Yi, and S. Kim. The evolution of data races. In MSR,
pages 171–174, 2012.

[20] G. Santos, N. Anquetil, A. Etien, S. Ducasse, and M. T. Valente. System
specific, source code transformations. In ICSME, pages 221–230, 2015.

[21] Y. Tian, J. Lawall, and D. Lo. Identifying Linux bug fixing patches. In
ICSE, pages 386–396, 2012.

[22] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk. There and back again: Can you compile that
snapshot? Journal of Software: Evolution and Process, 2016.

[23] D. Wu, L. Chen, Y. Zhou, and B. Xu. An extensive empirical study
on C++ concurrency constructs. Information & Software Technology,
76:1–18, 2016.

[24] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering links
between bugs and changes. In ESEC/FSE, pages 15–25, 2011.

[25] R. Xin, Z. Qi, S. Huang, C. Xiang, Y. Zheng, Y. Wang, and H. Guan.
An automation-assisted empirical study on lock usage for concurrent
programs. In ICSM, pages 100–109, 2013.

[26] H. Zhong and Z. Su. An empirical study on real bug fixes. In ICSE,
pages 913–923, 2015.

599599

