
Cross-Project Software Defect Prediction

Using Feature-Based Transfer Learning

He Qing, Li Biwen, Shen Beijun*
School of Software

Shanghai Jiao Tong University
Shanghai 200240, China

{heqing1234567, bjshen}@sjtu.edu.cn

Yong Xia

IBM Client Innovation Center China,
Shanghai 200433, China

xiayong@cn.ibm.com

ABSTRACT

Cross-project defect prediction is used as an effective means of

predicting software defects when data shortage exists in the early

phase of software development. Unfortunately, the precision of

cross-project defect prediction is usually poor, mainly because of the

difference between source and target projects. This paper proposes a

new cross-project defect prediction approach (TrCPDP) using

feature-based transfer learning to solve issues caused by project

differences. The core insight of TrCPDP is to (1) filter and transfer

highly-correlated data based on data samples of target projects, and

(2) evaluate and choose learning schemas for transferring data sets.

Models are then built for predicting defects in target projects. We

have also conducted an evaluation of the proposed approach on

PROMISE datasets. The evaluation results show that, with our

proposed approach for cross-project defect prediction, F-measure of

81.8% of projects and AUC of 54.5% projects are improved. It also

achieves similar f-measure and AUC as some within-project defect

prediction approaches.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Performance measures,

Process metrics, Product metrics. D.2.9 [Software Engineering]:

Management –Software quality assurance (SQA)

General Terms

Management, Measurement, Reliability, Experimentation

Keywords

cross-project defect prediction; transfer learning; feature-based

transfer.

1. INTRODUCTION
Software Defect Prediction is one of the most important software

quality assurance techniques. It utilizes basic software features (e.g.

average method complexity, cohesion amongst classes, etc.) and

previously discovered defects to predict potential defects. The

complexity of source code is one of the most important prominent

indicators for such models. Besides, code churn information, change

history, and structure of software development organizations are also

taken into consideration. For example, Akiyama[1] proposes that

the number of software defects in the early software development

phase has a relation with the lines of code. The equation D = 4.86 +

0.018L holds, showing that there are approximately 22.86 defects

per thousand lines of code.1

So far, many software defect prediction approaches have been

proposed and most are effective when applied to one single project,

which is also called within-version defect prediction. Due to its high

prediction accuracy, within-version defect prediction is largely

adopted in industry. Current defect prediction models are all built

using historical data from projects, and their defects can be predicted

based on these labeled data samples. Here, the features extracted

from project dataset are taken as input of prediction model. Then

potential defects remained in this project are predicted as output.

Because of similar characteristics of different modules in a single

project, within-version prediction model usually has good

performance. Another defect prediction setting is, analyzing

software defects in previous versions to predict the quality of its

subsequent version. We call this within-project defect prediction.

Within-project defect prediction also has good performance.

Defect prediction works well if models are trained with a

sufficiently large amount of data samples. However, projects may

lack the data needed to build such predictors early in the life cycle.

Prior work assumed that relevant training data was sufficient. In

practice, training data is often scarce, either because a project is too

small or it is in its first release, for which no past data exists[2] In

these cases, it is impossible to make automated predictions. A

practical approach can then be: leveraging a model from other

projects to predict defects in target project. For new projects or

projects with limited training data, it is feasible to train a prediction

model by using sufficient training data from existing source projects,

and then apply the model to some target projects. We call this cross-

project defect prediction.

Cross-project defect prediction has following main advantage:

Many projects lack data samples in the very beginning, which causes

prediction model cannot be built. But cross-project defect prediction

will not be affected by this problem, because other project dataset

can be used to build defect predictor for target project.

However, compared with within-version defect prediction and

within-project defect prediction, accuracy of cross-project prediction

is very low. The main reason is that there are differences in features

and datasets among various projects, which introduce irrelevant or

*corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’15, Month 1–2, 2015, City, State, Country.
Copyright 2015 ACM 1-58113-000-0/00/0004…$5.00.

redundant information relative to defect prediction. The specific

questions that we address here are:

(1) How to reduce the divergence in data distribution between

source dataset and target dataset?

Performance of cross-project defect prediction is generally

poor, mainly because of divergence in data distribution between

the source and target data samples. Some researchers have

studied one cross-project defect prediction model on a large

scale. For 12 real-world applications, they ran 622 cross-project

predictions. The results indicated that cross-project prediction

is a serious challenge, i.e., simply using models from projects

in the same domain or with the same process does not lead to

accurate predictions [3].Out of these 622 non-trivial cross-

project combinations, the model achieved relatively good

results for only 21 combinations. What’s more, some

characteristic of cross-project defect prediction is especially

interesting. Taking IE and Firefox as an example, they share

similar features and components. However, they are

implemented with different development process and tools. The

results showed that Firefox was an effective defect predictor for

IE, but IE does not predict Firefox. Cross-project defect

prediction relies on feature dataset. Many factors, incl. coding

styles from different developers, code structure and code

complexity, can bring difficulty to cross-project defect

prediction[4] .

(2) How to reduce the irrelevant data to lower down the false alarm

rate?

When large amount of project data samples are used to predict

defects, only a part of them make sense. The irrelevant data

samples have bad effects on the prediction outcome [5] .

In this paper, we introduce transfer learning technique to cross-

project defect prediction, and propose a feature-based transfer

learning approach to cross-project defect prediction (TrCPDP).

Transfer learning refers to using the knowledge learned from one

domain to help to learn the knowledge in another unknown

domain[6] . The core insight of TrCPDP is to filter highly correlated

data samples based on target project dataset, transfer common

knowledge, and then evaluate and choose the best learning schema

for target dataset. Models are then built for predicting defects in

target projects.

Our main contributions are threefold:

(1) Improving prediction performance by adopting feature-based

transfer learning technique on cross-project defect prediction.

Feature-based transfer helps to train a model to predict the

target project defects. Experiments show that cross-project

defect prediction model using our approach obtains prediction

performance comparable to the within-project models and

yields similar results even when the training data is not

sufficient.

(2) Reducing data distribution divergence by filtering data

samples and selecting common features to transfer.

To obtain highly correlated data samples for target project

dataset, we adopt k-nearest algorithm and kNN algorithm to

filter source data samples. K-nearest algorithm is used to find

number of groups that data samples can be divided into, and

kNN algorithm is used to find data samples that are correlated

to a specific target data sample. To reduce divergence in data

distribution between source dataset and target dataset, we

design an algorithm to select common features to transfer.

(3) Evaluating different combinations of feature selection

algorithm and classification algorithm.

Different target project defect prediction may call for different

feature selection and classification algorithm. In this paper, we

design an evaluation and selection process to find out the best

fit prediction schema for corresponding target project.

The rest of this paper is structured as follows: In section 2 we

describe related work about cross-project defect prediction. A

feature-based transfer learning approach to cross-project defect

prediction – TrCPDP is proposed in section 3. We then discuss

experiment and cross-project predictability in section 4, and finally

conclude the paper in section 5.

2. RELATED WORK
A variety of defect prediction technologies have emerged in recent

years. Wang Qing et al.[7] categorize these technologies, such as

metric-based defect prediction technology, defect distribution

prediction technology, dynamic defect prediction technology, and so

on. However, the performance of these prediction models is limited

by the amount of data samples in the corresponding project. Except

the COQUALMO model and the Bayesian method take the

influence of different projects and environment factors into

consideration, other methods and technologies are all limited by the

history data samples. Obviously, these prediction models cannot be

widely used.

In recent years, some researchers have explored the cross-project

defect prediction in the following ways: reducing the divergence of

data distribution, identifying groups of software projects with similar

characteristic, and building adaptive prediction model. Some of

them have achieved good performance.

2.1 Solve Divergence of Data Distribution
In order to reduce the divergence of data distribution, researchers

take some measures such as reducing the data distribution space,

selecting relevant data samples, etc.

Briand et al.[8] made a first attempt to solve the cross-project defect

prediction. They used linear regression and MARS to build a

prediction model. Results indicated that a model built on one system

could be accurately used to rank classes within another system

according to their fault proneness. However, because of project

differences, the predicted fault probabilities were not representative.

Cruz et al.[9] found the distribution of design-complexity metrics

varies from project to project, making the task of predicting across

projects difficult to achieve. To solve the problem, they employed

simple log transformations for making design-complexity measures

more comparable among projects.

Nam et al.[10] found the performance of cross-project defect

prediction is generally poor, largely because of feature distribution

differences between source and target projects. They applied a state-

of-art transfer learning approach, TCA[14], to make feature

distributions in source and target projects similar.

Turhan et al.[2] proposed a practical defect prediction approach for

companies that do not track defect related data. Specifically, they

investigated the applicability of cross-company data for building

localized defect predictors using static code features.

Jaechang Nam et al. [12] claimed that cross project defect prediction

requires projects that have the same metric set, and proposed

heterogeneous defect prediction to solve the limitation.

Xiaoyuan Jing et al. [13] proposed that for CPDP, the metrics used

and the size of metric set are different in the data of two companies.

They aimed to provide an effective solution for this problem by

unifying metric representation.

Peters et al.[11] introduced the Peters filter, which was based on the

conjecture that when local data is scarce, more information exists in

other projects. Accordingly, the filter selected training data via the

structure of other projects. To assess the performance of the Peters

filter, they compared it with two other approaches for quality

prediction. They found that within-project predictors are weak for

small datasets, and the Peters filter+ cross-projects builds better

predictors.

Tosun et al.[15] briefly explained their model, presented its payoff,

and described how they have implemented the model in the

company. Furthermore, they compared the performance of their

model with that of another testing strategy applied in a pilot project

that implemented a new process called team software process (TSP).

Their results showed that defect predictors could predict 87 percent

of code defects, decrease inspection efforts by 72 percent, and hence

reduce post-release defects by 44 percent. They applied a data

filtering process, used the dataset from NASA to predict other

project defects successfully.

Peters and Zhang Hongyu et al.[16] aimed to enable effective defect

prediction from shared data while preserving privacy. They

proposed CLIFFed+MORPHed algorithms that maintain class

boundaries in a dataset. Results showed that, for the OO defect data

studied here, data could be privatized and shared without a

significant degradation in utility.

2.2 Identify Groups of Similar Projects
Jureczko and Madeyski et al.[17] performed clustering on software

projects in order to identify groups of software projects with similar

characteristic. They believed one defect prediction model should

work well for all projects that belong to such group.

Zhang et al.[18] proposed context-aware rank transformations for

predictors. They clustered projects based on the similarity of the

distribution of 26 predictors, and derived the rank transformations

by using quantities of predictors for a cluster. Adding context factors

to the universal model improves the predictive power. The universal

model obtains prediction performance comparable to the within-

project models and yields similar results when applied on five

external projects.

2.3 Adaptive Prediction Model
Zhang Hongyu from Microsoft Research Asia and Zhou Zhihua

from Nanjing University et al.[21] proposed a sample-based method

for software defect prediction. They described three methods for

selecting a sample: random sampling with conventional machine

learners, random sampling with semi-supervised learner and active

sampling with active semi-supervised learner. To facilitate the active

sampling, they proposed a novel active semi-supervised learning

method ACoForest that was able to sample the modules that were

the most helpful for learning a good prediction model. Results

showed that the proposed methods were effective.

Liu et al.[22] presented a novel search-based approach to software

quality modeling with multiple software project repositories. They

adopted a genetic-programming-based approach to select training

dataset. They evaluated 17 different machine learning methods and

ranked them, and then selected the best dataset.

2.4 Summary
We analyze the advantages and disadvantages of these technologies

above in Table 1.

Table 1. Analysis of related work

Technology Advantage Disadvantage

Solve

Difference

of Various

Project Data

Samples

Based on data

filtering, the ratio of

relevant data samples

can be increased, and

the false alarm rate

can be reduced.

The data after filtering

still have some

difference with target

project. Potential

relationships of features

are ignored.

Identify

Groups of

Similar

Projects

One defect prediction

model is supposed to

work well for all

projects that belong to

such group.

The technique of how to

group projects is still

not mature. And taking

the project as

granularity may ignore

the possible existence of

irrelevant data in

project.

Adaptive

Prediction

Model

By adopting the

genetic-programming-

based approach,

adaptive prediction

model receive good

performance.

The runtime of adaptive

algorithm is long and its

effectiveness is low.

When there are large

amount of other project

dataset, the time

complexity of

prediction process will

be incredible large.

Because of the disadvantage of current cross-project defect

prediction approach, Y. Ma et al. [19] apply transfer learning [23] to

defect prediction. In traditional classifiers, in order to ensure high

precision and high reliability of the classification model, two

prerequisites are hold:(1)the training data samples for learning and

the target data samples for testing distribute independently and

identically; (2)there are sufficient labeled data samples for training a

model. However, in real software engineering practices, these two

premises usually cannot be met. Transfer learning can effectively

transfer knowledge and information between two similar domains. If

adopting transfer learning, the two premises need not to be strictly

met. The research of Nam validate that transfer learning can help to

improve the accuracy of cross-project defect prediction. But no

systematic processes and algorithms are proposed.

Our proposed TrCPDP approach overcomes weakness mentioned

above and it consists of three parts: data distribution divergence

reduction, feature selection, and prediction schema evaluation.

Comparative experiments are designed to validate the effectiveness

of our approach.

3. CROSS-PROJECT DEFECT PREDICTION
As shown in Figure 1, this approach takes a large amount of labeled

other project data samples and a few labeled target project data

samples as input. After data filter and transfer, and prediction

schema evaluation, we can obtain highly powerful prediction model.

Our TrCPDP approach mainly accomplishes two tasks:

(1) Choose common components to transfer.

Simply using multi project dataset to train the model directly

will lead to high false alarm rate. Data samples that are highly

correlated to target project dataset need to be filtered out.

Considering divergence in data distribution between source

project dataset and target project dataset, some common

features need to be selected to reduce the cost of transfer.

(2) Choose feature selection and classification algorithm.

Different features have different impacts on classification

performance. There are many feature selection algorithms to

select out the most representative features. But which one is

best fit for cross-project defect prediction? This question

remains to be answered.

Besides, using different machine learning classification

algorithms may lead to different classification results. It is also

necessary to evaluate which algorithm is the best for a specific

target project defect prediction.

Filter and Transfer

Source

Project

Dataset

Target

Project Data

Samples

Target Project

Dataset

Target Project

Defect

Prediction

Filter and

Transfer

Sampling

Training

Prediction

Model

Defect

Prediction

Prediction

Results

Best Prediction

Schema

Training

Prediction

Model

Prediction Schema

 Evaluation

Training

Dataset

Testing

Dataset

Dataset

Evaluation

Defect

Prediction

Feature

Selection

C
ro

ss
-p

ro
je

ct

D
ef

ec
t

P
re

d
ic

ti
o

n

Figure 1. TrCPDP approach

Our TrCPDP approach consists of three phases:

(1) Filter and Transfer.

During this process, a subset of source data samples, which is

highly correlated with target project dataset, is filtered out.

Then common features between source dataset and target

dataset are extracted out. Both source dataset and target dataset

will be mapped into a new dimensional dataset. Based on the

reduced dimensional dataset, we transfer knowledge from

source projects to target project.

(2) Schema Evaluation.

New dimensional source dataset will be taken as training

dataset, and new dimensional target dataset will be taken as

testing dataset. Different feature selection algorithms and

different classification algorithms will be evaluated. Prediction

results will be recorded, and then a best performance prediction

schema will be chosen.

(3) Cross-Project Defect Prediction.

Based on the feature selection algorithms and the prediction

algorithms that are chosen from the previous steps, a cross-

project defect prediction model can be built.

3.1 Data Filter and Transfer
The divergence in data distribution between source project dataset

and target project dataset is a key cause of the bad performance of

cross-project defect prediction. One solution is to preprocess source

projects dataset, and then extract a subset that is highly correlated to

the target project.

TrCPDP adopts two processes to achieve this objective: First, a data

filtering algorithm is utilized to extract a subset of data samples.

Second, a transfer learning algorithm is introduced to extract

common features between source dataset and target dataset.

3.1.1 Data Filter
There are large amount of data samples in project. It is too expensive

to train a model directly using all these data. Moreover, the false

alarm rate will also be high. Peters et al.[28] discovered that

selecting training dataset from initial dataset would help to decrease

the false alarm rate, and eventually increase the recall (c.f. Section

3.2.2).

We adopt k-means clustering algorithm and kNN classification

algorithm to filter out highly correlated project data samples. First

we use k-means algorithm to partition different project data samples

into different groups. Then for each group, we use k-nearest

neighbor algorithm to pick out data samples that are highly

correlated with the target project data samples.

3.1.2 Feature-Based Data Transfer
Features shown in Table 2 are common metrics selected from initial

software features.

Table 2. Software features of datasets

Features Description

amc (average method
complexity)

The average size of java byte code

avg_cc (average
McCabe)

the average complexity of McCabe’s cyclomatic
in a class

ca (afferent couplings)
the number of classes in other packages that

depend upon classes within the package

cam (cohesion amongst

classes)
classify the parameters of each method

cbm (coupling between

methods)

the number of methods in one class that call the

methods or attributes in other classes

cbo (coupling between

objects)

the number of classes that call the methods or

attributes in other classes

ce (efferent couplings) the number of data types a class knows about

dam (data access) the percentage of private or protected attributes

dit (depth of inheritance

tree)
the place of the class in the inheritance tree

ic (inheritance coupling)
the number of parent classes which is coupled

with it

lcom (lack of cohesion

in methods)
measure the cohesion of each class of system

lcom3 (another lack of

cohesion measure)

another method to measure the cohesion of each

class of system

loc (lines of code) the number of total lines of code

max_cc (maximum

McCabe)

the max value of complexity of McCabe’

cyclomatic in a class

mfa (functional

abstraction)

the number of methods that can be inherited or

can be called by member functions

moa (aggregation) the number of class attributes that user defined

noc (number of

children)
the number of direct child classes

npm (number of public
methods)

the number of public functions in a class

rfc (response for a class)
the number of functions that are called to

response to a message

wmc (weighted methods

per class)
the weighted sum of all the methods in a class

defects the number of defects that have been known

TrCPDP utilizes transfer learning algorithm to make cross-project

prediction. Unlike traditional supervised learning, semi-supervised

learning and unsupervised learning, transfer learning extracts

knowledge from source domain, and then applies the knowledge to

target domain. Based on different situations between source and

target domains and tasks, transfer learning can be categorized under

three sub-settings, namely inductive transfer learning setting,

transductive transfer learning setting, and unsupervised transfer

learning setting. In our cross-project defect prediction, transductive

transfer learning is most suitable, because

 source and target tasks are the same; and

 unlabeled data in target domain are available; and

 a lot of labeled data in source domain are available.

Feature-representation transfer approaches to transductive transfer

learning setting are used in this paper. After analyzing correlation

between source dataset and target dataset[11], common features, on

which the knowledge transfer is based, are recognized. If two

datasets have some kind of correlation, there must be some common

features between them. More specifically, there may exist some

features that cause divergence in data distribution, while others may

not. After discovering common features among source projects and

target project, dimension of feature representation space is reduced.

As shown in figure 2, different shapes, such as circle, triangle, and

diamond, denote different project samples. They have different data

distribution. TrCPDP recognizes common features between source

and target dataset, then maps both source and target dataset into the

new feature space.

Figure 2. Feature-based transfer

In this paper, we use a method called Transfer Component Analysis

(TCA) proposed in [14] to extract common features. The pseudo

code is shown as follow:

Common Features Selection Algorithm

Input: Labeled source project dataset XS.

Unlabeled target project dataset XT.

Number of features in XS, n1.

Number of features in XT, n2.

Procedure:

1. Define a (𝑛1 + 𝑛2) × (𝑛1 + 𝑛2) kernel matrix 𝐾 =

 [
𝐾𝑆,𝑆 𝐾𝑆,𝑇

𝐾𝑇,𝑆 𝐾𝑇,𝑇
] , from witch KS,S , KT,T and KS,T

respectively are the kernel matrices on the data in the

source project datasets XS, target project dataset XT, and

cross-project datasets XS+ XT.

2. Define a (𝑛1 + 𝑛2) × (𝑛1 + 𝑛2) matrix 𝐿 = [𝐿ij] ≽ 0

with 𝐿ij =
1

𝑛1
2 if 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑆 ; 𝐿ij =

1

𝑛2
2 if 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑇 ;

otherwise, −
1

𝑛1𝑛2
 .

3. Use a (𝑛1 + 𝑛2) × 𝑚 matrix 𝑊̃ to transform the

corresponding feature vectors to a m-dimensional space.

The resultant kernel matrix is 𝐾 =

 (𝐾𝐾−
1

2𝑊̃)(𝑊̃⊺𝐾−
1

2𝐾) = 𝐾𝑊𝑊⊺𝐾, where 𝑊 =
 𝐾−1/2𝑊̃ ∈ ℝ(𝑛1 + 𝑛2) × 𝑚.

4. Define centering matrix 𝐻 = 𝐼𝑛1+𝑛2
 −

1

𝑛1+𝑛2
𝑙𝑙⊺, where

𝑙 ∈ ℝ𝑛1+𝑛2 is the column vector with all ones, and

𝐼𝑛1+𝑛2
 ∈ ℝ(𝑛1+𝑛2) × (𝑛1+𝑛2) is the identity matrix.

5. Define a function 𝑓 = 𝑡𝑟((𝑊⊺(𝐼 +
 𝜇𝐾𝐿𝐾)𝑊)−1𝑊⊺𝐾𝐻𝐾𝑊, where identity matrix 𝐼 =

 [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] ∈ ℝ𝑚 × 𝑚 , and 𝜇 is a trade-off parameter.

Here 𝜇 is set to be 0.1.

6. Find a solution of 𝑊such that f has a maximum value.

Output: Matrix W.

In the sequel, 𝐴 ≻ 0 (resp. 𝐴 ≽ 0) means that the matrix A is

symmetric and positive definite (pd) (resp. positive semi-definite

(psd)). Moreover, the transpose of vector or matrix is denoted by the

superscript ⊺, and tr(A) denotes the trace of A.

The output of 𝑊 is the eigenvectors corresponding to the m leading

eigenvectors of (𝐼 + 𝜇𝐾𝐿𝐾)−1𝐾𝐻𝐾 . According to these

eigenvectors, the leading components that minimize the difference

between source dataset and target dataset are found. These leading

components are extracted as common features.

Due to non-linear relationship among different features, TrCPDP

adopts transformation form of the Principal Component Analysis –

Kernel Principal Component[29] to select high-impact common

features. Then based on common feature dataset, source dataset and

target dataset will be transferred to a high correlation and small

distance dataset. This obtained dataset will be used as input of

prediction schema evaluation (the second step of TrCPDP).

3.2 Evaluation of Prediction Schema
During this process, we will compare the performance of different

prediction schemas, including feature selection algorithms and

prediction algorithms.

3.2.1 Evaluation Process of Prediction Schema
During the evaluation process, various combinations of feature

selection and classification algorithms will be performed. Four

common used feature selection algorithms, Chi-Square

algorithm(CS), InfoGain method(IG), Forward Selector

method(FS), and Backward Elimination method(BE), are performed

in our experiment. And three classification algorithms, Naïve Bayes,

decision tree J48 and oneR (they are all realized in WEKA[27]), are

used in our paper. Then 4×3 combinations, namely 12 prediction

schema are obtained, shown in Table 4.

Table 3. Schema for evaluation

Schema NB j48 oneR

CS CS+ NB CS+j48 CS+oneR

IG IG+ NB IG+j48 IG+oneR

FS FS+ NB FS+j48 FS+oneR

BE BE+ NB BE+j48 BE+oneR

The input is the dataset obtained from previous process. To avoid

occasional data anomalies, each combination of a feature selection

algorithm and a classification algorithm will be tested m times. Then

the average value of the m results will be taken as the final

evaluation value, which is denoted as AvgResult. These AvgResult

will be ranked in descending order, and then the first one will be

selected as the best schema.

The pseudo-code of the evaluation process is shown as follow:

Algorithm Evaluation

input: source–dataset obtained from previous process

target – target dataset, the project to be predicted

schema–combination of a feature selection algorithm and a

classification model

M - maximum number of repetitions

N - maximum number of folds

procedure:

M=3; /*number of repetitions

repeat

 test=target;

 train=source;

[learner,bestAttrs]= Learning(train,schema);

test’ =selectbestAttrsfrom test;

Result=TestClassifier(test’, learner);

/* Compute the performance measures of the learner

based on test dataset */

until M times

AvgResult =
1

M
∑ 𝑅𝑒𝑠𝑢𝑙𝑡

output:AvgResult

3.2.2 Evaluation Measurement
In this paper the standard F-measure and the AUC (Area Under the

ROC Curve) are taken as predictive performance evaluation

measurement. It depends on precision and recall value. They are

defined as follow:

 Precision = TP/(TP+FP) (1)

 Recall = TP/(TP+FN) (2)

TP (true positive) is the percent of defects that are predicted

accurately, while FP (false positive) is the percent of defects that are

predicted by mistake. FN is the percent of defects that are not

predicted effectively.

The F-measure is then calculated as:

 F-measure = (2*precision*recall) / (precision + recall) (3)

ROC curve takes the recall value as y-axis, precision value as x-axis.

The value of AUC is the area under the ROC curve, ranging from 0

to 1.

The larger F-measure and AUC are, the more accurate the prediction

schema is.

3.3 Cross-project Defect Prediction
After the evaluation process, the best schema (namely the best

combination of a feature selection algorithm and a classification

algorithm) corresponding to each target project is figured out. Based

on the dataset obtained from process (1), this schema can be utilized

to make cross-project defect prediction.

3.4 Summary
In this section, we propose our TrCPDP approach for cross-project

defect prediction. At the first step, a data filter and transfer process

is adopted. Through data filter, highly correlated data samples can

be picked out from source dataset. To reduce divergence in data

distribution between source dataset and target dataset, common

features are chosen and transferred. At the second step, we perform

different schema on cross-project defect prediction, and evaluate

their performance. The best schema corresponding to a specific

target project is figured out. By virtue of the source dataset gained

from the fist step and the best schema gained from the second step,

cross-project defect prediction can be carried out.

4. EXPERIMENTS
In this paper the PROMISE datasets are used

(http://code.google.com/p/promisedata/) to carry out the experiment.

The experiments aim to show that the data selection and transfer

process helps to improve the precision of the result, and TrCPDP is

effective for the cross-project defect prediction, and evaluate the

prediction power of TrCPDP.

4.1 Experimental Dataset
We choose datasets from 11 projects of their current version and

their previous version from PROMISE dataset to conduct

comparative experiments. The datasets are illustrated in Table 4.

Table 4. Project datasets

Project Dataset Previous Version

Project

Name

Number of

Instances

Project

Name

Number of

Instances

pbeans2 51 pbeans1 26

vel16 229 vel14 214

syn12 256 syn11 214

luc24 340 luc22 247

ivy20 352 ivy14 241

http://code.google.com/p/promisedata/

jedit42 367 jedit41 312

poi30 442 poi25 385

xer14 558 xer13 453

ant17 745 ant16 351

xal27 909 xal26 885

cam16 965 cam14 872

In order to meet the premise of cross-project defect prediction, only

a few data samples in target project are labeled when validating the

TrCPDP method. The target datasets are randomly partitioned into k

subsets, and one of them is selected out. Since the experiment

dataset is small, we set k = 5.

In this paper, we use WEKA[27] to make defect prediction.

Processed dataset is taken as input, and WEKA will output

prediction results. Comparing the results with actual defects of

projects, we can calculate the value of F-measure and AUC.

4.2 Experiment on Data Filter and Transfer
A comparative experiment is conducted between TrCPDP and

NTrCPDP. TrCPDP contains a data filter and transfer process,

while NTrCPDP does not. The experiment aims to validate that the

data filter and transfer process helps to improve the result of the

cross-project defect prediction.

4.2.1 Experiment Design
In this paper, we implement NTrCPDP and TrCPDP on 11 various

size projects and 12 prediction schemas. We make defect prediction

on target project, and evaluate prediction performance of different

prediction models. F-measure and AUC are recorded and analyzed.

In each iteration, data samples of one project are taken as target

project, and the other 10 project data samples are taken as training

dataset.

4.2.2 Experimental Results
The experiment results of NTrCPDP and TrCPDP are shown in

Table 5 and Table 6. We can observe that best prediction schema

corresponding to different target project is different. Evaluation

process of prediction schema is useful to select best classification

algorithm and feature selection algorithm.

Table 5. Prediction evaluation of NTrCPDP

Target

Dataset
F-measure AUC

Best Prediction

Schema

pbeans2 0.799 0.746 IG+NB

vel16 0.626 0.714 IG+NB

syn12 0.682 0.736 BE+j48

luc24 0.635 0.688 IG+NB

ivy20 0.793 0.732 BE+NB

jedit42 0.813 0.823 CS+NB

poi30 0.394 0.798 CS+NB

xer14 0.343 0.767 IG+NB

ant17 0.789 0.791 IG+NB

xal27 0.476 0.774 IG+j48

cam16 0.722 0.582 BE+NB

Table 6. Prediction evaluation of TrCPDP

Target

Dataset
F-measure AUC

Best Prediction

Schema

pbeans2 0.697 0.531 BE+j48

vel16 0.757 0.732 FS+NB

syn12 0.715 0.707 IG+j48

luc24 0.744 0.736 FS+NB

ivy20 0.857 0.691 IG+j48

jedit42 0.84 0.823 CS+NB

poi30 0.825 0.813 IG+j48

xer14 0.928 0.908 IG+j48

ant17 0.785 0.753 IG+j48

xal27 0.832 0.87 IG+NB

cam16 0.776 0.606 IG+j48

Table 7. Comparison between NTrCPDP and TrCPDP

4.2.3 Analysis of the Results
Prediction results of NTrCPDP and TrCPDP are shown in Table 7.

Let △f denote difference of F-measures between the two methods,

and △a denote difference of AUC between them. As we can see

from table 7, data filter and transfer process improves precision of

defect prediction effectively. F-measure of 9 projects among the

total 11 increases 0.153 in average, and AUC of 6 projects increases

Target

Dataset

F-measure AUC

NTrCPDP TrCPDP ∆f NTrCPDP TrCPDP ∆a

pbeans2 0.799 0.697 -0.102 0.746 0.531 -0.215

vel16 0.626 0.757 0.131 0.714 0.732 0.018

syn12 0.682 0.715 0.033 0.736 0.707 -0.029

luc24 0.635 0.744 0.109 0.688 0.736 0.048

ivy20 0.793 0.857 0.064 0.732 0.691 -0.041

jedit42 0.813 0.84 0.027 0.823 0.823 0

poi30 0.394 0.825 0.431 0.798 0.813 0.015

xer14 0.343 0.928 0.585 0.767 0.908 0.141

ant17 0.789 0.785 -0.004 0.791 0.753 -0.038

xal27 0.476 0.832 0.356 0.774 0.87 0.096

cam16 0.722 0.776 0.054 0.582 0.606 0.024

Average

Value
0.643 0.796 0.153 0.741 0.743 0.002

0.002 in average. Especially for xer14, its F-measure increases

0.585, and AUC increases 0.141.

4.3 Experiment on Cross Project Prediction
To evaluate prediction power of TrCPDP, we conduct a comparison

experiment between cross-project defect prediction and within-

project defect prediction. Performance of within-project defect

prediction is generally considered to be better than that of cross-

project defect prediction.

4.3.1 Experiment Design
Within-project defect prediction and cross-project prediction are

carried out on 11 different projects and 12 prediction schemas.

(1) Within-project defect prediction. The four kinds of machine

learning classification algorithms, NB, j48, and oneR, are

used to make IVDP (within-version defect prediction) and

SVDP (within-project prediction). Results of F-measure and

AUC are recorded. SVDP takes previous version project

dataset as training dataset, and then build prediction model to

predict defects of subsequent version project. 10-fold cross

validation is adopted in this experiment. In each iteration, we

divide data samples into 10 subsets of equal size, and then

select one subset as testing dataset and the other nine datasets

as training dataset.

(2) Cross-project defect prediction. The experiments are carried

out iteratively. We select one project dataset as target dataset,

and the other projects as training dataset in each iteration. F-

measure and AUC of best performance prediction model will

be recorded.

4.3.2 Experimental Results
The experimental results are shown in Table 8 and Table 9.

Table 8. IVDP evaluation using different prediction algorithms

Evaluation of IVDP

Target

Dataset

F-measure AUC

NB J48 oneR NB J48 oneR

pbeans2 0.755 0.685 0.799 0.591 0.38 0.626

vel16 0.644 0.702 0.68 0.733 0.677 0.635

syn12 0.715 0.784 0.721 0.733 0.73 0.676

luc24 0.556 0.645 0.558 0.723 0.645 0.535

ivy20 0.844 0.837 0.847 0.764 0.536 0.533

jedit42 0.849 0.87 0.82 0.83 0.676 0.568

poi30 0.528 0.787 0.758 0.797 0.812 0.732

xer14 0.674 0.929 0.932 0.837 0.904 0.895

ant17 0.805 0.808 0.776 0.808 0.699 0.65

xal27 0.902 0.994 0.98 0.851 0.657 0.498

cam16 0.767 0.751 0.725 0.676 0.611 0.509

Table 9. SVDP evaluation using different prediction algorithms

Evaluation of SVDP

Target

Dataset

F-measure AUC

NB J48 oneR NB J48 oneR

pbeans1 0.741 0.714 0.503 0.512 0.345 0.601

vel14 0.631 0.72 0.625 0.72 0.693 0.57

syn11 0.73 0.773 0.659 0.74 0.745 0.604

luc22 0.566 0.673 0.823 0.73 0.677 0.481

ivy14 0.85 0.842 0.848 0.749 0.668 0.54

jedit41 0.857 0.823 0.811 0.832 0.568 0.553

poi25 0.506 0.787 0.73 0.797 0.797 0.699

xer13 0.68 0.94 0.932 0.842 0.903 0.895

ant16 0.809 0.812 0.762 0.805 0.689 0.629

xal26 0.901 0.991 0.98 0.85 0.564 0.498

cam14 0.772 0.751 0.724 0.676 0.616 0.509

Table 10. F-measure and AUC of TrCPDP compared to

IVDP and SVDP

As we can see from Table 8 and Table 9, different prediction

algorithm leads to different prediction results. So prediction

algorithm should be chosen carefully to improve prediction

accuracy. In other words, proper prediction schema can effectively

improve the accuracy of defect prediction. This shows that the

evaluation process of different prediction schemas is necessary.

4.3.3 Analysis of the Results
The F-measure results of IVDP, SVDP, and TrCPDP are shown in

Figure 3, and the AUC results are shown in Figure 4. As is seen

Target

Dataset

f-measure AUC

IVDP SVDP TrCPDP IVDP SVDP TrCPDP

pbeans2 0.799 0.741 0.697 0.626 0.512 0.531

vel16 0.702 0.72 0.757 0.677 0.693 0.732

syn12 0.784 0.773 0.715 0.73 0.604 0.707

luc24 0.645 0.823 0.744 0.645 0.481 0.736

ivy20 0.847 0.85 0.857 0.533 0.668 0.691

jedit42 0.87 0.857 0.84 0.676 0.832 0.823

poi30 0.787 0.787 0.825 0.812 0.797 0.813

xer14 0.932 0.94 0.928 0.895 0.903 0.908

ant17 0.808 0.812 0.785 0.699 0.689 0.753

xal27 0.994 0.991 0.832 0.657 0.564 0.87

cam16 0.767 0.772 0.776 0.676 0.676 0.606

Mean

Value
0.812 0.824 0.796 0.693 0.674 0.743

from the figure, TrCPDP can get similar F-measure and AUC values

to within-version and within-project defect prediction approach,

sometimes even better.

(1) TrCPDP vs IVDP: Considering prediction accuracy, F-

measure of TrCPDP is close to that of IVDP. Average

difference between them is 0.016. What’s more, the F-

measures of projects vel16, luc24, ivy20, poi30, and cam16

are even higher than that of the within-project defect

prediction. Considering the AUC, the results of 8 projects are

higher than that of the traditional one, which increases 0.049

in average. Especially the result of xal27 increases 0.213,

which is the highest.

(2) TrCPDP vs SVDP: Considering the prediction accuracy, F-

measure of TrCPDP is close to that of SVDP. Average

difference between them is 0.028. What’s more, the F-

measures of projects vel16, ivy20, poi30, and cam16 are even

higher than that of the cross-version defect prediction.

Considering the AUC, the results of 9 projects are higher than

that of the traditional one, which increases 0.068 in average.

Especially the result of xal27 increases 0.306, which is the

highest.

Figure 3. F-measure of TrCPDP compared to IVDP and SVDP

Figure 4. AUC of TrCPDP compared to IVDP and SVDP

5. CONCLUSION
In this paper we propose a cross-project defect prediction approach

TrCPDP using feature-based transfer learning. By solving the

difference among different project datasets, performance of cross-

project defect prediction is improved. TrCPDP adopts a data filter

and transfer process at first, and then evaluates various combinations

of different feature selection algorithms and different classification

algorithms. The false alarm rate is reduced largely, and prediction

accuracy is improved effectively. Experiment result shows that,

TrCPDP is better than traditional defect prediction approaches. Even

when data samples of target project are not enough, it still has good

performance.

Experiment results can be concluded as follow:

(1) Based on data filter and transfer, difference between source

dataset and target dataset is reduced. It helps to improve the

prediction accuracy. In our experiment, the precision

increases 0.183 in average.

(2) By evaluating different combinations of feature selection

algorithm and classification algorithm, the best prediction

schemas corresponding to different target projects are

different.

For future work we envision the following:

(1) Our experiment is conducted on PROMISE dataset. Projects

in the dataset are limited. In future work, we plan to use more

projects and extract more features to validate effectiveness of

our approach.

(2) Feature selection algorithms and classification algorithms

used in our TrCPDP approach are relatively simple. In the

future, we will improve the algorithms and explore the effects

of different combination of these new feature selection

algorithm and classification algorithm.

(3) Our approach has been proved to be useful for projects of

PROMISE dataset. But its effectiveness for projects in

industry remains to be verified. In future, associated

verification will be done with more sophisticated tools, which

also need to be further developed for software defect

prediction of large scale industry applications.

6. ACKNOWLEDGMENTS
This research is supported by 973 Program in China (Grant No.

2015CB352203) and National Natural Science Foundation of China

(Grant No. 61472242).

7. REFERENCES
[1] Akiyama F. An example of software system debugging. In:

Proc. of the Int’l Federation of Information Proc. Societies

Congress. New York: Springer Science and Business Media,

1971. 353−359.

[2] Turhan B, Menzies T, Bener A, et al. On the relative value of

cross-company and within-company data for defect prediction.

Empirical Software Engineering, 2009, 14(5): 540-578.

[3] Zimmermann T, Nagappan N, Gall H, et al. Cross-project

defect prediction: a large scale experiment on data vs. domain

vs. process. In: Proc. of the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT

symposium on the foundations of software engineering, NY,

USA, 2009, 91-100.

[4] Nagappan N, Ball T, Zeller, A. Mining metrics to predict

component failures. In: Proc. of the 28th international

conference on Software engineering, NY, USA, 2006, 452-461.

[5] Turhan B, Menzies T, Bener A B, et al. On the relative value

of cross-company and within-company data for defect

prediction. Empirical Software Engineering, 2009, 14(5): 540-

578.

[6] Zhuang FZ, He Q, Shi ZZ. Survey on transfer learning

research. Journal of Software,2015, 26(1): 26-39. (in Chinese

with English abstract).

[7] Wang Q, Wu SJ, Li MS. Software Defect Prediction. Journal

of Software, 2008, 19(7): 1565-1580. (in Chinese with English

abstract).

[8] Briand L C, Melo W L, Wust J. Assessing the applicability of

fault-proneness models across object-oriented software

projects. IEEE Transactions on Software Engineering, 2002,

28(7): 706-720.

[9] Cruz A, Ochimizu K. Towards logistic regression models for

predicting fault-prone code across software projects. In: Proc.

of Empirical Software Engineering and Measurement, Lake

Buena Vista, FL, 2009, 460-463.

[10] Nam J, Pan S J, Kim S. Transfer defect learning. In: Proc. of

International Conference on Software Engineering, San

Francisco, CA, 2013, 382-391.

[11] Peters F, Menzies T, Marcus A. Better cross company defect

prediction. In: Proc. of the Tenth International Workshop on

Mining Software Repositories, San Francisco, CA, 2013, 409-

418.

[12] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer Learning for

Cross-company Software Defect Prediction. Information and

Software Technology, 2012, 54(3): 248-256.

[13] Xiaoyuan Jing et al. Heterogeneous Cross-Company Defect

Prediction by Unified Metric Representation and CCA-Based

Transfer Learning. ESEC/FSE 2015, 496-507.

[14] Pan S J, Tsang I W, Kwok J T, et al. Domain Adaptation via

Transfer Component Analysis. IEEE Transactions on Neural

Networks, 2010, 22(2): 199-210.

[15] Tosun A, Bener A B, Kale R. AI-Based Software Defect

Predictors: Applications and Benefits in a Case Study. IAAI,

2011, 32(2): 57-68.

[16] Fayola Peters, Tim Menzies, Liang Gong, Hongyu Zhang.

Balancing Privacy and Utility in Cross-Company Defect

Prediction. IEEE Trans. Software Eng. 39(8): 1054-106.

[17] Marian Jureczko, Lech Madeyski. Towards identifying

software project clusters with regard to defect prediction. In:

Proc. of the 6th International Conference on Predictive Models

in Software Engineering , 2010.

[18] Zhang F, Mockus A, Keivanloo I, et al. Towards Building a

Universal Defect Prediction Model. In: Proc. of the 11th

Working Conference on Mining Software Repositories, 2014,

182-191.

[19] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer Learning for

Cross-Company Software Defect Prediction. Inf. Softw.

Technol, 2012, 54(3):248-256.

[20] Nam J, Pan S J, Kim S. Transfer Defect Learning. ICSE’13,

382-391.

[21] Ming Li, Hongyu Zhang, Rongxin Wu, Zhi-Hua Zhou.

Sample-based software defect prediction with active and semi-

supervised learning. Automated Software Engineering, 2012,

19(2): 201-230.

[22] Liu Y, Khoshgoftaar T M, Seliya N. Evolutionary optimization

of software quality modeling with multiple repositories. IEEE

Transactions on Software Engineering, 2010, 36(6): 852-864.

[23] Wenyuan Dai, Qiang Yang, Gui-RongXue, Yong Yu.

Boosting for transfer learning. In: Proc. of ICML 2007: 193-

200

[24] Wenyuan Dai, Yuqiang Chen, Gui-RongXue, Qiang Yang,

Yong Yu. Translated Learning: Transfer Learning across

Different Feature Spaces. NIPS 2008: 353-360

[25] Wenyuan Dai, Ou Jin, Gui-RongXue, Qiang Yang, Yong Yu.

EigenTransfer: a unified framework for transfer learning.

ICML 2009: 193-200

[26] Dai WY. Instance-based and Feature-based Transfer Learning

[MS. Thesis]. Shanghai Jiao Tong University,2008 (in Chinese

with English abstract).

[27] http://www.cs.waikato.ac.nz/ml/weka/

[28] Peters F, Menzies T, Gong L, et al. Balancing privacy and

utility in cross-company defect prediction. IEEE Transactions

on Software Engineering, 2013, 33(9): 637-640.

[29] Scholkopf B, Smola A, Muller K R. Kernel Principal

Component Analysis. Lecture Notes in Computer Science,

1997, 1327: 583-588.

