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ABSTRACT 

Cross-project defect prediction is used as an effective means of 

predicting software defects when data shortage exists in the early 

phase of software development. Unfortunately, the precision of 

cross-project defect prediction is usually poor, mainly because of the 

difference between source and target projects. This paper proposes a 

new cross-project defect prediction approach (TrCPDP) using 

feature-based transfer learning to solve issues caused by project 

differences. The core insight of TrCPDP is to (1) filter and transfer 

highly-correlated data based on data samples of target projects, and 

(2) evaluate and choose learning schemas for transferring data sets. 

Models are then built for predicting defects in target projects. We 

have also conducted an evaluation of the proposed approach on 

PROMISE datasets. The evaluation results show that, with our 

proposed approach for cross-project defect prediction, F-measure of 

81.8% of projects and AUC of 54.5% projects are improved. It also 

achieves similar f-measure and AUC as some within-project defect 

prediction approaches. 

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics—Performance measures, 

Process metrics, Product metrics. D.2.9 [Software Engineering]: 

Management –Software quality assurance (SQA) 

General Terms 

Management, Measurement, Reliability, Experimentation 

Keywords 

cross-project defect prediction; transfer learning; feature-based 

transfer. 

1. INTRODUCTION 
Software Defect Prediction is one of the most important software 

quality assurance techniques. It utilizes basic software features (e.g. 

average method complexity, cohesion amongst classes, etc.) and 

previously discovered defects to predict potential defects. The 

complexity of source code is one of the most important prominent 

indicators for such models. Besides, code churn information, change 

history, and structure of software development organizations are also 

taken into consideration. For example, Akiyama[1]   proposes that 

the number of software defects in the early software development 

phase has a relation with the lines of code. The equation D = 4.86 + 

0.018L holds, showing that there are approximately 22.86 defects 

per thousand lines of code.1 

So far, many software defect prediction approaches have been 

proposed and most are effective when applied to one single project, 

which is also called within-version defect prediction. Due to its high 

prediction accuracy, within-version defect prediction is largely 

adopted in industry. Current defect prediction models are all built 

using historical data from projects, and their defects can be predicted 

based on these labeled data samples. Here, the features extracted 

from project dataset are taken as input of prediction model. Then 

potential defects remained in this project are predicted as output. 

Because of similar characteristics of different modules in a single 

project, within-version prediction model usually has good 

performance. Another defect prediction setting is, analyzing 

software defects in previous versions to predict the quality of its 

subsequent version. We call this within-project defect prediction. 

Within-project defect prediction also has good performance. 

Defect prediction works well if models are trained with a 

sufficiently large amount of data samples. However, projects may 

lack the data needed to build such predictors early in the life cycle. 

Prior work assumed that relevant training data was sufficient. In 

practice, training data is often scarce, either because a project is too 

small or it is in its first release, for which no past data exists[2]  In 

these cases, it is impossible to make automated predictions. A 

practical approach can then be: leveraging a model from other 

projects to predict defects in target project. For new projects or 

projects with limited training data, it is feasible to train a prediction 

model by using sufficient training data from existing source projects, 

and then apply the model to some target projects. We call this cross-

project defect prediction.  

Cross-project defect prediction has following main advantage: 

Many projects lack data samples in the very beginning, which causes 

prediction model cannot be built. But cross-project defect prediction 

will not be affected by this problem, because other project dataset 

can be used to build defect predictor for target project. 

However, compared with within-version defect prediction and 

within-project defect prediction, accuracy of cross-project prediction 

is very low. The main reason is that there are differences in features 

and datasets among various projects, which introduce irrelevant or 
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redundant information relative to defect prediction. The specific 

questions that we address here are: 

(1) How to reduce the divergence in data distribution between 

source dataset and target dataset? 

Performance of cross-project defect prediction is generally 

poor, mainly because of divergence in data distribution between 

the source and target data samples. Some researchers have 

studied one cross-project defect prediction model on a large 

scale. For 12 real-world applications, they ran 622 cross-project 

predictions. The results indicated that cross-project prediction 

is a serious challenge, i.e., simply using models from projects 

in the same domain or with the same process does not lead to 

accurate predictions [3].Out of these 622 non-trivial cross-

project combinations, the model achieved relatively good 

results for only 21 combinations. What’s more, some 

characteristic of cross-project defect prediction is especially 

interesting. Taking IE and Firefox as an example, they share 

similar features and components. However, they are 

implemented with different development process and tools. The 

results showed that Firefox was an effective defect predictor for 

IE, but IE does not predict Firefox. Cross-project defect 

prediction relies on feature dataset. Many factors, incl. coding 

styles from different developers, code structure and code 

complexity, can bring difficulty to cross-project defect 

prediction[4]  . 

(2) How to reduce the irrelevant data to lower down the false alarm 

rate? 

When large amount of project data samples are used to predict 

defects, only a part of them make sense. The irrelevant data 

samples have bad effects on the prediction outcome [5]  . 

In this paper, we introduce transfer learning technique to cross-

project defect prediction, and propose a feature-based transfer 

learning approach to cross-project defect prediction (TrCPDP). 

Transfer learning refers to using the knowledge learned from one 

domain to help to learn the knowledge in another unknown 

domain[6]  . The core insight of TrCPDP is to filter highly correlated 

data samples based on target project dataset, transfer common 

knowledge, and then evaluate and choose the best learning schema 

for target dataset. Models are then built for predicting defects in 

target projects. 

Our main contributions are threefold: 

(1) Improving prediction performance by adopting feature-based 

transfer learning technique on cross-project defect prediction. 

Feature-based transfer helps to train a model to predict the 

target project defects. Experiments show that cross-project 

defect prediction model using our approach obtains prediction 

performance comparable to the within-project models and 

yields similar results even when the training data is not 

sufficient. 

(2) Reducing data distribution divergence by filtering data 

samples and selecting common features to transfer. 

To obtain highly correlated data samples for target project 

dataset, we adopt k-nearest algorithm and kNN algorithm to 

filter source data samples. K-nearest algorithm is used to find 

number of groups that data samples can be divided into, and 

kNN algorithm is used to find data samples that are correlated 

to a specific target data sample. To reduce divergence in data 

distribution between source dataset and target dataset, we 

design an algorithm to select common features to transfer. 

(3) Evaluating different combinations of feature selection 

algorithm and classification algorithm. 

Different target project defect prediction may call for different 

feature selection and classification algorithm. In this paper, we 

design an evaluation and selection process to find out the best 

fit prediction schema for corresponding target project. 

The rest of this paper is structured as follows: In section 2 we 

describe related work about cross-project defect prediction. A 

feature-based transfer learning approach to cross-project defect 

prediction – TrCPDP is proposed in section 3. We then discuss 

experiment and cross-project predictability in section 4, and finally 

conclude the paper in section 5. 

2. RELATED WORK 
A variety of defect prediction technologies have emerged in recent 

years. Wang Qing et al.[7]  categorize these technologies, such as 

metric-based defect prediction technology, defect distribution 

prediction technology, dynamic defect prediction technology, and so 

on. However, the performance of these prediction models is limited 

by the amount of data samples in the corresponding project. Except 

the COQUALMO model and the Bayesian method take the 

influence of different projects and environment factors into 

consideration, other methods and technologies are all limited by the 

history data samples. Obviously, these prediction models cannot be 

widely used. 

In recent years, some researchers have explored the cross-project 

defect prediction in the following ways: reducing the divergence of 

data distribution, identifying groups of software projects with similar 

characteristic, and building adaptive prediction model. Some of 

them have achieved good performance. 

2.1 Solve Divergence of Data Distribution 
In order to reduce the divergence of data distribution, researchers 

take some measures such as reducing the data distribution space, 

selecting relevant data samples, etc.  

Briand et al.[8]  made a first attempt to solve the cross-project defect 

prediction. They used linear regression and MARS to build a 

prediction model. Results indicated that a model built on one system 

could be accurately used to rank classes within another system 

according to their fault proneness. However, because of project 

differences, the predicted fault probabilities were not representative. 

Cruz et al.[9] found the distribution of design-complexity metrics 

varies from project to project, making the task of predicting across 

projects difficult to achieve. To solve the problem, they employed 

simple log transformations for making design-complexity measures 

more comparable among projects. 

Nam et al.[10] found the performance of cross-project defect 

prediction is generally poor, largely because of feature distribution 

differences between source and target projects. They applied a state-

of-art transfer learning approach, TCA[14], to make feature 

distributions in source and target projects similar. 

Turhan et al.[2]   proposed a practical defect prediction approach for 

companies that do not track defect related data. Specifically, they 

investigated the applicability of cross-company data for building 

localized defect predictors using static code features. 



Jaechang Nam et al. [12] claimed that cross project defect prediction 

requires projects that have the same metric set, and proposed 

heterogeneous defect prediction to solve the limitation. 

Xiaoyuan Jing et al. [13] proposed that for CPDP, the metrics used 

and the size of metric set are different in the data of two companies. 

They aimed to provide an effective solution for this problem by 

unifying metric representation. 

Peters et al.[11]  introduced the Peters filter, which was based on the 

conjecture that when local data is scarce, more information exists in 

other projects. Accordingly, the filter selected training data via the 

structure of other projects. To assess the performance of the Peters 

filter, they compared it with two other approaches for quality 

prediction. They found that within-project predictors are weak for 

small datasets, and the Peters filter+ cross-projects builds better 

predictors. 

Tosun et al.[15]  briefly explained their model, presented its payoff, 

and described how they have implemented the model in the 

company. Furthermore, they compared the performance of their 

model with that of another testing strategy applied in a pilot project 

that implemented a new process called team software process (TSP). 

Their results showed that defect predictors could predict 87 percent 

of code defects, decrease inspection efforts by 72 percent, and hence 

reduce post-release defects by 44 percent. They applied a data 

filtering process, used the dataset from NASA to predict other 

project defects successfully. 

Peters and Zhang Hongyu et al.[16]  aimed to enable effective defect 

prediction from shared data while preserving privacy. They 

proposed CLIFFed+MORPHed algorithms that maintain class 

boundaries in a dataset. Results showed that, for the OO defect data 

studied here, data could be privatized and shared without a 

significant degradation in utility. 

2.2 Identify Groups of Similar Projects 
Jureczko and Madeyski et al.[17]  performed clustering on software 

projects in order to identify groups of software projects with similar 

characteristic. They believed one defect prediction model should 

work well for all projects that belong to such group. 

Zhang et al.[18]  proposed context-aware rank transformations for 

predictors. They clustered projects based on the similarity of the 

distribution of 26 predictors, and derived the rank transformations 

by using quantities of predictors for a cluster. Adding context factors 

to the universal model improves the predictive power. The universal 

model obtains prediction performance comparable to the within-

project models and yields similar results when applied on five 

external projects. 

2.3 Adaptive Prediction Model 
Zhang Hongyu from Microsoft Research Asia and Zhou Zhihua 

from Nanjing University et al.[21]  proposed a sample-based method 

for software defect prediction. They described three methods for 

selecting a sample: random sampling with conventional machine 

learners, random sampling with semi-supervised learner and active 

sampling with active semi-supervised learner. To facilitate the active 

sampling, they proposed a novel active semi-supervised learning 

method ACoForest that was able to sample the modules that were 

the most helpful for learning a good prediction model. Results 

showed that the proposed methods were effective. 

Liu et al.[22]   presented a novel search-based approach to software 

quality modeling with multiple software project repositories. They 

adopted a genetic-programming-based approach to select training 

dataset. They evaluated 17 different machine learning methods and 

ranked them, and then selected the best dataset.  

2.4 Summary 
We analyze the advantages and disadvantages of these technologies 

above in Table 1. 

 

Table 1. Analysis of related work 

Technology Advantage Disadvantage 

Solve 

Difference 

of Various 

Project Data 

Samples 

Based on data 

filtering, the ratio of 

relevant data samples 

can be increased, and 

the false alarm rate 

can be reduced. 

The data after filtering 

still have some 

difference with target 

project. Potential 

relationships of features 

are ignored. 

Identify 

Groups of 

Similar 

Projects 

One defect prediction 

model is supposed to 

work well for all 

projects that belong to 

such group. 

The technique of how to 

group projects is still 

not mature. And taking 

the project as 

granularity may ignore 

the possible existence of 

irrelevant data in 

project. 

Adaptive 

Prediction 

Model 

By adopting the 

genetic-programming-

based approach, 

adaptive prediction 

model receive good 

performance. 

The runtime of adaptive 

algorithm is long and its 

effectiveness is low. 

When there are large 

amount of other project 

dataset, the time 

complexity of 

prediction process will 

be incredible large. 

 

Because of the disadvantage of current cross-project defect 

prediction approach, Y. Ma et al. [19] apply transfer learning [23]  to 

defect prediction. In traditional classifiers, in order to ensure high 

precision and high reliability of the classification model, two 

prerequisites are hold:(1)the training data samples for learning and 

the target data samples for testing distribute independently and 

identically; (2)there are sufficient labeled data samples for training a 

model. However, in real software engineering practices, these two 

premises usually cannot be met. Transfer learning can effectively 

transfer knowledge and information between two similar domains. If 

adopting transfer learning, the two premises need not to be strictly 

met. The research of Nam validate that transfer learning can help to 

improve the accuracy of cross-project defect prediction. But no 

systematic processes and algorithms are proposed. 

Our proposed TrCPDP approach overcomes weakness mentioned 

above and it consists of three parts: data distribution divergence 

reduction, feature selection, and prediction schema evaluation. 

Comparative experiments are designed to validate the effectiveness 

of our approach.  

3. CROSS-PROJECT DEFECT PREDICTION 
As shown in Figure 1, this approach takes a large amount of labeled 

other project data samples and a few labeled target project data 

samples as input. After data filter and transfer, and prediction 

schema evaluation, we can obtain highly powerful prediction model.  



Our TrCPDP approach mainly accomplishes two tasks: 

(1) Choose common components to transfer.  

Simply using multi project dataset to train the model directly 

will lead to high false alarm rate. Data samples that are highly 

correlated to target project dataset need to be filtered out. 

Considering divergence in data distribution between source 

project dataset and target project dataset, some common 

features need to be selected to reduce the cost of transfer. 

(2) Choose feature selection and classification algorithm. 

Different features have different impacts on classification 

performance. There are many feature selection algorithms to 

select out the most representative features. But which one is 

best fit for cross-project defect prediction? This question 

remains to be answered. 

Besides, using different machine learning classification 

algorithms may lead to different classification results. It is also 

necessary to evaluate which algorithm is the best for a specific 

target project defect prediction. 
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Figure 1. TrCPDP approach 

Our TrCPDP approach consists of three phases: 

(1) Filter and Transfer.  

During this process, a subset of source data samples, which is 

highly correlated with target project dataset, is filtered out. 

Then common features between source dataset and target 

dataset are extracted out. Both source dataset and target dataset 

will be mapped into a new dimensional dataset. Based on the 

reduced dimensional dataset, we transfer knowledge from 

source projects to target project. 

(2) Schema Evaluation. 

New dimensional source dataset will be taken as training 

dataset, and new dimensional target dataset will be taken as 

testing dataset. Different feature selection algorithms and 

different classification algorithms will be evaluated. Prediction 

results will be recorded, and then a best performance prediction 

schema will be chosen. 

(3) Cross-Project Defect Prediction. 

Based on the feature selection algorithms and the prediction 

algorithms that are chosen from the previous steps, a cross-

project defect prediction model can be built. 

3.1 Data Filter and Transfer 
The divergence in data distribution between source project dataset 

and target project dataset is a key cause of the bad performance of 

cross-project defect prediction. One solution is to preprocess source 

projects dataset, and then extract a subset that is highly correlated to 

the target project.  

TrCPDP adopts two processes to achieve this objective: First, a data 

filtering algorithm is utilized to extract a subset of data samples. 

Second, a transfer learning algorithm is introduced to extract 

common features between source dataset and target dataset.  

3.1.1 Data Filter 
There are large amount of data samples in project. It is too expensive 

to train a model directly using all these data. Moreover, the false 

alarm rate will also be high. Peters et al.[28] discovered that 

selecting training dataset from initial dataset would help to decrease 

the false alarm rate, and eventually increase the recall (c.f. Section 

3.2.2). 

We adopt k-means clustering algorithm and kNN classification 

algorithm to filter out highly correlated project data samples. First 

we use k-means algorithm to partition different project data samples 

into different groups. Then for each group, we use k-nearest 

neighbor algorithm to pick out data samples that are highly 

correlated with the target project data samples. 

3.1.2 Feature-Based Data Transfer 
Features shown in Table 2 are common metrics selected from initial 

software features. 

 

Table 2. Software features of datasets 

Features Description 

amc (average method 
complexity) 

The average size of java byte code 

avg_cc (average 
McCabe) 

the average complexity of McCabe’s cyclomatic 
in a class 

ca (afferent couplings) 
the number of classes in other packages that 

depend upon classes within the package 

cam (cohesion amongst 

classes) 
classify the parameters of each method 

cbm (coupling between 

methods) 

the number of methods in one class that call the 

methods or attributes in other classes 

cbo (coupling between 

objects) 

the number of classes that call the methods or 

attributes in other classes 

ce (efferent couplings) the number of data types a class knows about 

dam (data access) the percentage of private or protected attributes 

  



dit (depth of inheritance 

tree) 
the place of the class in the inheritance tree 

ic (inheritance coupling) 
the number of parent classes which is coupled 

with it 

lcom (lack of cohesion 

in methods) 
measure the cohesion of each class of system 

lcom3 (another lack of 

cohesion measure) 

another method to measure the cohesion of each 

class of system 

loc (lines of code) the number of total lines of code 

max_cc (maximum 

McCabe) 

the max value of complexity of McCabe’ 

cyclomatic in a class 

mfa (functional 

abstraction) 

the number of methods that can be inherited or 

can be called by member functions 

moa (aggregation) the number of class attributes that user defined 

noc (number of 

children) 
the number of direct child classes 

npm (number of public 
methods) 

the number of public functions in a class 

rfc (response for a class) 
the number of functions that are called to 

response to a message 

wmc (weighted methods 

per class) 
the weighted sum of all the methods in a class 

defects the number of defects that have been known 

 

TrCPDP utilizes transfer learning algorithm to make cross-project 

prediction. Unlike traditional supervised learning, semi-supervised 

learning and unsupervised learning, transfer learning extracts 

knowledge from source domain, and then applies the knowledge to 

target domain. Based on different situations between source and 

target domains and tasks, transfer learning can be categorized under 

three sub-settings, namely inductive transfer learning setting,  

transductive transfer learning setting, and unsupervised transfer 

learning setting. In our cross-project defect prediction, transductive 

transfer learning is most suitable, because 

 source and target tasks are the same; and 

 unlabeled data in target domain are available; and 

 a lot of labeled data in source domain are available. 

Feature-representation transfer approaches to transductive transfer 

learning setting are used in this paper. After analyzing correlation 

between source dataset and target dataset[11], common features, on 

which the knowledge transfer is based, are recognized. If two 

datasets have some kind of correlation, there must be some common 

features between them. More specifically, there may exist some 

features that cause divergence in data distribution, while others may 

not. After discovering common features among source projects and 

target project, dimension of feature representation space is reduced. 

As shown in figure 2, different shapes, such as circle, triangle, and 

diamond, denote different project samples. They have different data 

distribution. TrCPDP recognizes common features between source 

and target dataset, then maps both source and target dataset into the 

new feature space. 

 

Figure 2. Feature-based transfer 

In this paper, we use a method called Transfer Component Analysis 

(TCA) proposed in [14] to extract common features. The pseudo 

code is shown as follow: 

Common Features Selection Algorithm 

Input: Labeled source project dataset XS. 

Unlabeled target project dataset XT. 

Number of features in XS, n1. 

Number of features in XT, n2. 

Procedure: 

1. Define a (𝑛1 + 𝑛2)  ×  (𝑛1 + 𝑛2)  kernel matrix 𝐾 =

 [
𝐾𝑆,𝑆 𝐾𝑆,𝑇

𝐾𝑇,𝑆 𝐾𝑇,𝑇
] , from witch KS,S , KT,T and KS,T 

respectively are the kernel matrices on the data in the 

source project datasets XS, target project dataset XT, and 

cross-project datasets XS+ XT. 

2. Define a (𝑛1 + 𝑛2)  ×  (𝑛1 + 𝑛2) matrix 𝐿 =  [𝐿ij]  ≽  0 

with 𝐿ij =  
1

𝑛1
2  if 𝑥𝑖 , 𝑥𝑗  ∈  𝑋𝑆 ; 𝐿ij =  

1

𝑛2
2 if 𝑥𝑖 , 𝑥𝑗  ∈  𝑋𝑇 ; 

otherwise, −
1

𝑛1𝑛2
 . 

3. Use a (𝑛1 + 𝑛2)  ×  𝑚 matrix 𝑊̃ to transform the 

corresponding feature vectors to a m-dimensional space. 

The resultant kernel matrix is 𝐾  =

 (𝐾𝐾−
1

2𝑊̃)(𝑊̃⊺𝐾−
1

2𝐾)  = 𝐾𝑊𝑊⊺𝐾, where 𝑊 =
 𝐾−1/2𝑊̃  ∈  ℝ(𝑛1 + 𝑛2) × 𝑚. 

4. Define centering matrix 𝐻 =  𝐼𝑛1+𝑛2
 −  

1

𝑛1+𝑛2
𝑙𝑙⊺, where 

𝑙 ∈  ℝ𝑛1+𝑛2 is the column vector with all ones, and 

𝐼𝑛1+𝑛2
 ∈  ℝ(𝑛1+𝑛2) × (𝑛1+𝑛2)  is the identity matrix. 

5. Define a function 𝑓 = 𝑡𝑟((𝑊⊺(𝐼 +
 𝜇𝐾𝐿𝐾)𝑊)−1𝑊⊺𝐾𝐻𝐾𝑊, where identity matrix 𝐼 =

 [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

]  ∈  ℝ𝑚 × 𝑚 , and 𝜇 is a trade-off parameter. 

Here 𝜇 is set to be 0.1. 

6. Find a solution of 𝑊such that f has a maximum value. 

Output: Matrix W. 

 

In the sequel, 𝐴 ≻  0  (resp. 𝐴 ≽  0) means that the matrix A is 

symmetric and positive definite (pd) (resp. positive semi-definite 

(psd)). Moreover, the transpose of vector or matrix is denoted by the 

superscript ⊺, and tr(A) denotes the trace of A. 

The output of 𝑊 is the eigenvectors corresponding to the m leading 

eigenvectors of (𝐼 +  𝜇𝐾𝐿𝐾)−1𝐾𝐻𝐾 . According to these 

eigenvectors, the leading components that minimize the difference 

between source dataset and target dataset are found. These leading 

components are extracted as common features. 

Due to non-linear relationship among different features, TrCPDP 

adopts transformation form of the Principal Component Analysis – 

Kernel Principal Component[29] to select high-impact common 

features. Then based on common feature dataset, source dataset and 

target dataset will be transferred to a high correlation and small 

distance dataset. This obtained dataset will be used as input of 

prediction schema evaluation (the second step of  TrCPDP). 

3.2 Evaluation of Prediction Schema 
During this process, we will compare the performance of different 

prediction schemas, including feature selection algorithms and 

prediction algorithms.  

3.2.1 Evaluation Process of Prediction Schema 
During the evaluation process, various combinations of feature 

selection and classification algorithms will be performed. Four 

common used feature selection algorithms, Chi-Square 



algorithm(CS),  InfoGain method(IG), Forward Selector 

method(FS), and Backward Elimination method(BE), are performed 

in our experiment. And three classification algorithms, Naïve Bayes, 

decision tree J48 and oneR (they are all realized in WEKA[27]), are 

used in our paper. Then 4×3 combinations, namely 12 prediction 

schema are obtained, shown in Table 4. 

Table 3. Schema for evaluation 

Schema NB j48 oneR 

CS CS+ NB CS+j48 CS+oneR 

IG IG+ NB IG+j48 IG+oneR 

FS FS+ NB FS+j48 FS+oneR 

BE BE+ NB BE+j48 BE+oneR 

 

The input is the dataset obtained from previous process. To avoid 

occasional data anomalies, each combination of a feature selection 

algorithm and a classification algorithm will be tested m times. Then 

the average value of the m results will be taken as the final 

evaluation value, which is denoted as AvgResult. These AvgResult 

will be ranked in descending order, and then the first one will be 

selected as the best schema.  

The pseudo-code of the evaluation process is shown as follow: 

Algorithm Evaluation 

input: source–dataset obtained from previous process 

target – target dataset, the project to be predicted 

schema–combination of a feature selection algorithm and a 

classification model  

M - maximum number of repetitions 

N - maximum number of folds 

procedure:  

M=3; /*number of repetitions 

repeat 

 test=target; 

 train=source; 

[learner,bestAttrs]= Learning(train,schema); 

test’ =selectbestAttrsfrom test; 

Result=TestClassifier(test’, learner); 

/* Compute the performance measures of the learner 

based on test dataset */ 

until M times 

AvgResult =
1

M
∑ 𝑅𝑒𝑠𝑢𝑙𝑡 

output:AvgResult 

 

3.2.2 Evaluation Measurement 
In this paper the standard F-measure and the AUC (Area Under the 

ROC Curve) are taken as predictive performance evaluation 

measurement. It depends on precision and recall value. They are 

defined as follow: 

 Precision = TP/(TP+FP)   (1) 

 Recall = TP/(TP+FN)   (2) 

TP (true positive) is the percent of defects that are predicted 

accurately, while FP (false positive) is the percent of defects that are 

predicted by mistake. FN is the percent of defects that are not 

predicted effectively.  

The F-measure is then calculated as: 

  F-measure = (2*precision*recall) / (precision + recall)       (3) 

ROC curve takes the recall value as y-axis, precision value as x-axis. 

The value of AUC is the area under the ROC curve, ranging from 0 

to 1. 

The larger F-measure and AUC are, the more accurate the prediction 

schema is. 

3.3 Cross-project Defect Prediction 
After the evaluation process, the best schema (namely the best 

combination of a feature selection algorithm and a classification 

algorithm) corresponding to each target project is figured out. Based 

on the dataset obtained from process (1), this schema can be utilized 

to make cross-project defect prediction. 

3.4 Summary 
In this section, we propose our TrCPDP approach for cross-project 

defect prediction. At the first step, a data filter and transfer process 

is adopted. Through data filter, highly correlated data samples can 

be picked out from source dataset. To reduce divergence in data 

distribution between source dataset and target dataset, common 

features are chosen and transferred. At the second step, we perform 

different schema on cross-project defect prediction, and evaluate 

their performance. The best schema corresponding to a specific 

target project is figured out. By virtue of the source dataset gained 

from the fist step and the best schema gained from the second step, 

cross-project defect prediction can be carried out. 

4. EXPERIMENTS 
In this paper the PROMISE datasets are used 

(http://code.google.com/p/promisedata/) to carry out the experiment. 

The experiments aim to show that the data selection and transfer 

process helps to improve the precision of the result, and TrCPDP is 

effective for the cross-project defect prediction, and evaluate the 

prediction power of  TrCPDP. 

4.1 Experimental Dataset 
We choose datasets from 11 projects of their current version and 

their previous version from PROMISE dataset to conduct 

comparative experiments. The datasets are illustrated in Table 4. 

 

Table 4. Project datasets 

Project Dataset Previous Version 

Project 

Name 

Number of 

Instances 

Project 

Name 

Number of 

Instances 

pbeans2 51 pbeans1 26 

vel16 229 vel14 214 

syn12 256 syn11 214 

luc24 340 luc22 247 

ivy20 352 ivy14 241 

http://code.google.com/p/promisedata/


jedit42 367 jedit41 312 

poi30 442 poi25 385 

xer14 558 xer13 453 

ant17 745 ant16 351 

xal27 909 xal26 885 

cam16 965 cam14 872 

 

In order to meet the premise of cross-project defect prediction, only 

a few data samples in target project are labeled when validating the 

TrCPDP method. The target datasets are randomly partitioned into k 

subsets, and one of them is selected out. Since the experiment 

dataset is small, we set k = 5. 

In this paper, we use WEKA[27] to make defect prediction. 

Processed dataset is taken as input, and WEKA will output 

prediction results. Comparing the results with actual defects of 

projects, we can calculate the value of F-measure and AUC. 

4.2 Experiment on Data Filter and Transfer 
A comparative experiment is conducted between TrCPDP and 

NTrCPDP. TrCPDP contains a data filter and transfer process, 

while NTrCPDP does not. The experiment aims to validate that the 

data filter and transfer process helps to improve the result of the 

cross-project defect prediction. 

4.2.1 Experiment Design 
In this paper, we implement NTrCPDP and TrCPDP on 11 various 

size projects and 12 prediction schemas. We make defect prediction 

on target project, and evaluate prediction performance of different 

prediction models. F-measure and AUC are recorded and analyzed. 

In each iteration, data samples of one project are taken as target 

project, and the other 10 project data samples are taken as training 

dataset. 

4.2.2 Experimental Results 
The experiment results of NTrCPDP and TrCPDP are shown in 

Table 5 and Table 6. We can observe that best prediction schema 

corresponding to different target project is different. Evaluation 

process of prediction schema is useful to select best classification 

algorithm and feature selection algorithm. 

 

Table 5. Prediction evaluation of NTrCPDP 

Target 

Dataset 
F-measure AUC 

Best Prediction 

Schema 

pbeans2 0.799 0.746 IG+NB 

vel16 0.626 0.714 IG+NB 

syn12 0.682 0.736 BE+j48 

luc24 0.635 0.688 IG+NB 

ivy20 0.793 0.732 BE+NB 

jedit42 0.813 0.823 CS+NB 

poi30 0.394 0.798 CS+NB 

xer14 0.343 0.767 IG+NB 

ant17 0.789 0.791 IG+NB 

xal27 0.476 0.774 IG+j48 

cam16 0.722 0.582 BE+NB 

 

Table 6. Prediction evaluation of TrCPDP 

Target 

Dataset 
F-measure AUC 

Best Prediction 

Schema 

pbeans2 0.697 0.531 BE+j48 

vel16 0.757 0.732 FS+NB 

syn12 0.715 0.707 IG+j48 

luc24 0.744 0.736 FS+NB 

ivy20 0.857 0.691 IG+j48 

jedit42 0.84 0.823 CS+NB 

poi30 0.825 0.813 IG+j48 

xer14 0.928 0.908 IG+j48 

ant17 0.785 0.753 IG+j48 

xal27 0.832 0.87 IG+NB 

cam16 0.776 0.606 IG+j48 

 

Table 7. Comparison between NTrCPDP and TrCPDP 

 

4.2.3 Analysis of the Results 
Prediction results of NTrCPDP and TrCPDP are shown in Table 7. 

Let △f denote difference of F-measures between the two methods, 

and △a denote difference of AUC between them. As we can see 

from table 7, data filter and transfer process improves precision of 

defect prediction effectively. F-measure of 9 projects among the 

total 11 increases 0.153 in average, and AUC of 6 projects increases 

Target 

Dataset 

F-measure AUC 

NTrCPDP TrCPDP ∆f NTrCPDP TrCPDP ∆a 

pbeans2 0.799 0.697 -0.102 0.746 0.531 -0.215 

vel16 0.626 0.757 0.131 0.714 0.732 0.018 

syn12 0.682 0.715 0.033 0.736 0.707 -0.029 

luc24 0.635 0.744 0.109 0.688 0.736 0.048 

ivy20 0.793 0.857 0.064 0.732 0.691 -0.041 

jedit42 0.813 0.84 0.027 0.823 0.823 0 

poi30 0.394 0.825 0.431 0.798 0.813 0.015 

xer14 0.343 0.928 0.585 0.767 0.908 0.141 

ant17 0.789 0.785 -0.004 0.791 0.753 -0.038 

xal27 0.476 0.832 0.356 0.774 0.87 0.096 

cam16 0.722 0.776 0.054 0.582 0.606 0.024 

Average 

Value 
0.643 0.796 0.153 0.741 0.743 0.002 



0.002 in average. Especially for xer14, its F-measure increases 

0.585, and AUC increases 0.141. 

4.3 Experiment on Cross Project Prediction 
To evaluate prediction power of TrCPDP, we conduct a comparison 

experiment between cross-project defect prediction and within-

project defect prediction. Performance of within-project defect 

prediction is generally considered to be better than that of cross-

project defect prediction. 

4.3.1 Experiment Design 
Within-project defect prediction and cross-project prediction are 

carried out on 11 different projects and 12 prediction schemas. 

(1) Within-project defect prediction. The four kinds of machine 

learning classification algorithms, NB, j48, and oneR, are 

used to make IVDP (within-version defect prediction) and 

SVDP (within-project prediction). Results of F-measure and 

AUC are recorded. SVDP takes previous version project 

dataset as training dataset, and then build prediction model to 

predict defects of subsequent version project. 10-fold cross 

validation is adopted in this experiment. In each iteration, we 

divide data samples into 10 subsets of equal size, and then 

select one subset as testing dataset and the other nine datasets 

as training dataset. 

(2) Cross-project defect prediction. The experiments are carried 

out iteratively. We select one project dataset as target dataset, 

and the other projects as training dataset in each iteration. F-

measure and AUC of best performance prediction model will 

be recorded. 

4.3.2 Experimental Results 
The experimental results are shown in Table 8 and Table 9. 

 

Table 8. IVDP evaluation using different prediction algorithms 

Evaluation of IVDP 

Target 

Dataset 

F-measure AUC 

NB J48 oneR NB J48 oneR 

pbeans2 0.755 0.685 0.799 0.591 0.38 0.626 

vel16 0.644 0.702 0.68 0.733 0.677 0.635 

syn12 0.715 0.784 0.721 0.733 0.73 0.676 

luc24 0.556 0.645 0.558 0.723 0.645 0.535 

ivy20 0.844 0.837 0.847 0.764 0.536 0.533 

jedit42 0.849 0.87 0.82 0.83 0.676 0.568 

poi30 0.528 0.787 0.758 0.797 0.812 0.732 

xer14 0.674 0.929 0.932 0.837 0.904 0.895 

ant17 0.805 0.808 0.776 0.808 0.699 0.65 

xal27 0.902 0.994 0.98 0.851 0.657 0.498 

cam16 0.767 0.751 0.725 0.676 0.611 0.509 

 

Table 9. SVDP evaluation using different prediction algorithms 

Evaluation of SVDP 

Target 

Dataset 

F-measure AUC 

NB J48 oneR NB J48 oneR 

pbeans1 0.741 0.714 0.503 0.512 0.345 0.601 

vel14 0.631 0.72 0.625 0.72 0.693 0.57 

syn11 0.73 0.773 0.659 0.74 0.745 0.604 

luc22 0.566 0.673 0.823 0.73 0.677 0.481 

ivy14 0.85 0.842 0.848 0.749 0.668 0.54 

jedit41 0.857 0.823 0.811 0.832 0.568 0.553 

poi25 0.506 0.787 0.73 0.797 0.797 0.699 

xer13 0.68 0.94 0.932 0.842 0.903 0.895 

ant16 0.809 0.812 0.762 0.805 0.689 0.629 

xal26 0.901 0.991 0.98 0.85 0.564 0.498 

cam14 0.772 0.751 0.724 0.676 0.616 0.509 

 

Table 10. F-measure and AUC of TrCPDP compared to 

IVDP and SVDP 

 

As we can see from Table 8 and Table 9, different prediction 

algorithm leads to different prediction results. So prediction 

algorithm should be chosen carefully to improve prediction 

accuracy. In other words, proper prediction schema can effectively 

improve the accuracy of defect prediction. This shows that the 

evaluation process of different prediction schemas is necessary. 

4.3.3 Analysis of the Results 
The F-measure results of IVDP, SVDP, and TrCPDP are shown in 

Figure 3, and the AUC results are shown in Figure 4. As is seen 

Target 

Dataset 

f-measure AUC 

IVDP SVDP TrCPDP IVDP SVDP TrCPDP 

pbeans2 0.799 0.741 0.697 0.626 0.512 0.531 

vel16 0.702 0.72 0.757 0.677 0.693 0.732 

syn12 0.784 0.773 0.715 0.73 0.604 0.707 

luc24 0.645 0.823 0.744 0.645 0.481 0.736 

ivy20 0.847 0.85 0.857 0.533 0.668 0.691 

jedit42 0.87 0.857 0.84 0.676 0.832 0.823 

poi30 0.787 0.787 0.825 0.812 0.797 0.813 

xer14 0.932 0.94 0.928 0.895 0.903 0.908 

ant17 0.808 0.812 0.785 0.699 0.689 0.753 

xal27 0.994 0.991 0.832 0.657 0.564 0.87 

cam16 0.767 0.772 0.776 0.676 0.676 0.606 

Mean 

Value 
0.812 0.824 0.796 0.693 0.674 0.743 



from the figure, TrCPDP can get similar F-measure and AUC values 

to within-version and within-project defect prediction approach, 

sometimes even better. 

(1) TrCPDP vs IVDP: Considering prediction accuracy, F-

measure of TrCPDP is close to that of IVDP. Average 

difference between them is 0.016. What’s more, the F-

measures of projects vel16, luc24, ivy20, poi30, and cam16 

are even higher than that of the within-project defect 

prediction. Considering the AUC, the results of 8 projects are 

higher than that of the traditional one, which increases 0.049 

in average. Especially the result of xal27 increases 0.213, 

which is the highest. 

(2) TrCPDP vs SVDP: Considering the prediction accuracy, F-

measure of TrCPDP is close to that of SVDP. Average 

difference between them is 0.028. What’s more, the F-

measures of projects vel16, ivy20, poi30, and cam16 are even 

higher than that of the cross-version defect prediction. 

Considering the AUC, the results of 9 projects are higher than 

that of the traditional one, which increases 0.068 in average. 

Especially the result of xal27 increases 0.306, which is the 

highest. 

 

 

Figure 3. F-measure of TrCPDP compared to IVDP and SVDP 

 

 

Figure 4. AUC of TrCPDP compared to IVDP and SVDP 

 

5. CONCLUSION 
In this paper we propose a cross-project defect prediction approach 

TrCPDP using feature-based transfer learning. By solving the 

difference among different project datasets, performance of cross-

project defect prediction is improved. TrCPDP adopts a data filter 

and transfer process at first, and then evaluates various combinations 

of different feature selection algorithms and different classification 

algorithms. The false alarm rate is reduced largely, and prediction 

accuracy is improved effectively. Experiment result shows that, 

TrCPDP is better than traditional defect prediction approaches. Even 

when data samples of target project are not enough, it still has good 

performance.  

Experiment results can be concluded as follow: 

(1) Based on data filter and transfer, difference between source 

dataset and target dataset is reduced. It helps to improve the 

prediction accuracy. In our experiment, the precision 

increases 0.183 in average. 

(2) By evaluating different combinations of feature selection 

algorithm and classification algorithm, the best prediction 

schemas corresponding to different target projects are 

different. 

For future work we envision the following: 

(1) Our experiment is conducted on PROMISE dataset. Projects 

in the dataset are limited. In future work, we plan to use more 

projects and extract more features to validate effectiveness of 

our approach. 

(2) Feature selection algorithms and classification algorithms 

used in our TrCPDP approach are relatively simple. In the 

future, we will improve the algorithms and explore the effects 

of different combination of these new feature selection 

algorithm and classification algorithm. 

(3) Our approach has been proved to be useful for projects of 

PROMISE dataset. But its effectiveness for projects in 

industry remains to be verified. In future, associated 

verification will be done with more sophisticated tools, which 

also need to be further developed for software defect 

prediction of large scale industry applications.  

6. ACKNOWLEDGMENTS 
This research is supported by 973 Program in China (Grant No. 

2015CB352203) and National Natural Science Foundation of China 

(Grant No. 61472242). 

7. REFERENCES 
[1]   Akiyama F. An example of software system debugging. In: 

Proc. of the Int’l Federation of Information Proc. Societies 

Congress. New York: Springer Science and Business Media, 

1971. 353−359. 

[2]   Turhan B, Menzies T, Bener A, et al. On the relative value of 

cross-company and within-company data for defect prediction. 

Empirical Software Engineering, 2009, 14(5): 540-578. 

[3]   Zimmermann T, Nagappan N, Gall H, et al. Cross-project 

defect prediction: a large scale experiment on data vs. domain 

vs. process. In: Proc. of the 7th joint meeting of the European 

software engineering conference and the ACM SIGSOFT 

symposium on the foundations of software engineering, NY, 

USA, 2009, 91-100. 

[4]   Nagappan N, Ball T, Zeller, A. Mining metrics to predict 

component failures. In: Proc. of the 28th international 

conference on Software engineering, NY, USA, 2006, 452-461. 

[5]   Turhan B, Menzies T, Bener A B, et al. On the relative value 

of cross-company and within-company data for defect 

prediction. Empirical Software Engineering, 2009, 14(5): 540-

578. 



[6]   Zhuang FZ, He Q, Shi ZZ. Survey on transfer learning 

research. Journal of Software,2015, 26(1): 26-39. (in Chinese 

with English abstract). 

[7]   Wang Q, Wu SJ, Li MS. Software Defect Prediction. Journal 

of Software, 2008, 19(7): 1565-1580. (in Chinese with English 

abstract). 

[8]   Briand L C, Melo W L, Wust J. Assessing the applicability of 

fault-proneness models across object-oriented software 

projects. IEEE Transactions on Software Engineering, 2002, 

28(7): 706-720. 

[9]   Cruz A, Ochimizu K. Towards logistic regression models for 

predicting fault-prone code across software projects. In: Proc. 

of Empirical Software Engineering and Measurement, Lake 

Buena Vista, FL, 2009, 460-463. 

[10]   Nam J, Pan S J, Kim S. Transfer defect learning. In: Proc. of 

International Conference on Software Engineering, San 

Francisco, CA, 2013, 382-391. 

[11]   Peters F, Menzies T, Marcus A. Better cross company defect 

prediction. In: Proc. of the Tenth International Workshop on 

Mining Software Repositories, San Francisco, CA, 2013, 409-

418. 

[12]   Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer Learning for 

Cross-company Software Defect Prediction. Information and 

Software Technology,  2012, 54(3): 248-256. 

[13]   Xiaoyuan Jing et al. Heterogeneous Cross-Company Defect 

Prediction by Unified Metric Representation and CCA-Based 

Transfer Learning.  ESEC/FSE 2015, 496-507. 

[14]   Pan S J, Tsang I W, Kwok J T, et al. Domain Adaptation via 

Transfer Component Analysis. IEEE Transactions on Neural 

Networks, 2010, 22(2): 199-210. 

[15]   Tosun A, Bener A B, Kale R. AI-Based Software Defect 

Predictors: Applications and Benefits in a Case Study. IAAI, 

2011, 32(2): 57-68. 

[16]   Fayola Peters, Tim Menzies, Liang Gong, Hongyu Zhang. 

Balancing Privacy and Utility in Cross-Company Defect 

Prediction. IEEE Trans. Software Eng. 39(8): 1054-106. 

[17]   Marian Jureczko, Lech Madeyski. Towards identifying 

software project clusters with regard to defect prediction. In: 

Proc. of the 6th International Conference on Predictive Models 

in Software Engineering ,  2010. 

[18]   Zhang F, Mockus A, Keivanloo I, et al. Towards Building a 

Universal Defect Prediction Model. In: Proc. of the 11th 

Working Conference on Mining Software Repositories, 2014, 

182-191. 

[19]   Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer Learning for 

Cross-Company Software Defect Prediction. Inf. Softw. 

Technol, 2012, 54(3):248-256. 

[20]   Nam J, Pan S J, Kim S. Transfer Defect Learning. ICSE’13, 

382-391. 

[21]   Ming Li, Hongyu Zhang, Rongxin Wu, Zhi-Hua Zhou. 

Sample-based software defect prediction with active and semi-

supervised learning. Automated Software Engineering, 2012, 

19(2): 201-230. 

[22]   Liu Y, Khoshgoftaar T M, Seliya N. Evolutionary optimization 

of software quality modeling with multiple repositories. IEEE 

Transactions on Software Engineering, 2010, 36(6): 852-864. 

[23]   Wenyuan Dai, Qiang Yang, Gui-RongXue, Yong Yu. 

Boosting for transfer learning. In: Proc. of ICML 2007: 193-

200 

[24]   Wenyuan Dai, Yuqiang Chen, Gui-RongXue, Qiang Yang, 

Yong Yu. Translated Learning: Transfer Learning across 

Different Feature Spaces. NIPS 2008: 353-360 

[25]   Wenyuan Dai, Ou Jin, Gui-RongXue, Qiang Yang, Yong Yu. 

EigenTransfer: a unified framework for transfer learning. 

ICML 2009: 193-200 

[26]   Dai WY. Instance-based and Feature-based Transfer Learning 

[MS. Thesis]. Shanghai Jiao Tong University,2008 (in Chinese 

with English abstract). 

[27]   http://www.cs.waikato.ac.nz/ml/weka/ 

[28]   Peters F, Menzies T, Gong L, et al. Balancing privacy and 

utility in cross-company defect prediction. IEEE Transactions 

on Software Engineering, 2013, 33(9): 637-640. 

[29]   Scholkopf B, Smola A, Muller K R. Kernel Principal 

Component Analysis. Lecture Notes in Computer Science, 

1997, 1327: 583-588. 
 


