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Abstract—NL2SQL advocates an idea of helping engineers
and/or end users generate SQL statements from natural language
queries. However, it still remains a strong challenge in improving
its precision and scalability. This paper introduces MultiSQL,
a multitask deep learning approach to performing NL2SQL.
MultiSQL unifies the task representations and trains a model
in parallel on multiple tasks, including NL2SQL, machine trans-
lation, etc. It employs a multitask question-answering network
for jointly learning all tasks and transferring knowledge among
tasks. We have evaluated MultiSQL on two query datasets:
WikiSQL (an open sourced dataset) and CnSQL (a Chinese
dataset we created). The evaluation results clearly show the
effectiveness of MultiSQL. In particular, the accuracies achieved
by MultiSQL approximate those achieved by the state-of-the-art
NL2SQL methods on WikiSQL, and its accuracy is 78 %, which
is 17% higher than the ‘“Chinese2English + NL2SQL” method
on CnSQL.

Index Terms—NL2SQL, SQL statement generation, deep
learning, multitask learning

I. INTRODUCTION

With the rapid development of data engineering, industry
engineers frequently perform data queries for data analyses
and/or obtaining online reports. SQL is a popular and flexible
language for querying data. In order to facilitate end users
to perform data queries, some studies on NL2SQL, i.e.,
translating natural language queries into SQL statements, have
been conducted.

So far two mainstreams of NL2SQL methods do exist. One
mainstream is to use a seg2seq (sequence to sequence) model
with neural networks for query generation [1], [2]. In partic-
ular, training a seq2seq model requires a standard format [2].
Meanwhile, a query result can have different logical forms,
which reduces the effectiveness of the training process. Seqg2set
(sequence to set) is another mainstream, which divides a query
into parts and generates them individually [3], [4]. A seq2set
method is capable of processing the disorders of filtering
conditions effectively, but it may miss internal dependencies
in the input sequences.

The existing efforts have achieved remarkable results. How-
ever, they are still facing two main difficulties when applied
in practice.
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First, many NL2SQL methods are only evaluated on the
machine-generated datasets, making their effectiveness un-
clearly shown. Indeed, most of the methods are evaluated
on WikiSQL*—an open sourced dataset automatically extracted
from Wikipedia. An NL2SQL method should be evaluated on
both the machine- and the human-generated datasets [5].

Second, many NL2SQL methods are not scalable, as they
only focus on translating queries in English into SQL state-
ments. In case that queries in other languages are raised, they
must at first be translated into descriptions in English, and
then to SQL statements. The imprecision occurred during the
translation stage can be propagated.

One solution to this is combining the language transla-
tion task with NL2SQL to seize the latent information in
the queries and datasets. This paper presents MultiSQL, a
multitask learning approach to NL2SQL. MultiSQL learns one
model for multiple NLP tasks, including NL2SQL, machine
comprehension, machine translation, etc. MultiSQL uses a
TCR (Task-Content-Result) template to unify all tasks, and
builds a multitask deep learning network for jointly learning
all tasks and transferring knowledge among them.

This paper makes the next contributions:

1) A deep learning approach. We propose a general,
scalable multitask deep learning approach, MultiSQL,
to NL2SQL. MultiSQL trains a model for multiple NLP
tasks, and takes three training strategies for accelerating
sample efficient learnings and supporting knowledge
transfers among tasks.

2) A multitasking neural network. We design a multi-
tasking neural network with an encoder and a decoder.
The encoder adopts dual coattention to represent the task
and its content sequences, compressing all of this in-
formation with two BiLSTMs. The decoder with multi-
pointer-generator utilizes attention over the content, task
and previously output tokens to make decisions.

3) Dataset and evaluation. We have evaluated Multi-
SQL on WikiSQL and CnSQL. CnSQL is a Chinese
SQL dataset we collected from real-world applications.
Through transfer learning, the performance of NL2SQL
is enhanced, achieving the logical form accuracy of
78.7% and the database execution accuracy of 86.1%.
Furthermore, MultiSQL achieves logical form accuracy
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of 78%, which is 17% higher than the “Chinese2English
+ NL2SQL” method.

II. RELATED WORK
A. Code Generation and NL2SQL

Code generation is becoming a promising approach to
improve the productivity of software development. At present,
there are three mainstream technologies: generation from
models using templates [6], program synthesis by logic specifi-
cation, and code generation and recommendation via machine
learning or information retrieval [7]. NL2SQL is one of its
research hotspots in recent decades, and in particular, neural-
network-based NL2SQL has achieved remarkable results.

Dong and Lapata [1] have introduced a seq2seq approach
that uses the augmented pointer network to convert textual
queries to logical forms. Zhong et al. [2] have published
the WikiSQL dataset and proposed a seq2seq model with
reinforcement learning. Xu et al. [3] have further improved
the results by taking a seq2set model and an attentional model.
Similarly, Guo and Gao [8] have developed tailored modules
to process three components in SQL queries. A parallel
work [4] obtained a high execution accuracy on WikiSQL
for SQL statements belongs to the “select-aggregator-where”
type. External knowledge bases are also employed for tagging
question words. Sun et al. [9] have presented a generative
learning model to replicate contents in column names, cells,
or SQL keywords. They have also improved the generation of
the WHERE clauses by leveraging the column-cell relations.

B. Multitask Learning

Multitask learning is a machine learning paradigm. It aims
to improve the generalization performance of a task using
many other related tasks. Multitask learning has been success-
fully applied in the domain of natural language processing.

Collobert et al. [10] have proposed a unified framework for
processing multiple natural language tasks, including chunk-
ing and part-of-speech tagging. Hashimoto et al. [11] have
presented a neural network for dependency analysis, semantic
correlation, and natural language reasoning. Zero-shot transla-
tion can be achieved by multitasking in language translations
[12], where seq2seq models use two or more encoders and
decoders for translation, parsing, and image subtitles [13].
Through model modularization, the above approaches can be
applied to image classification and speech recognition [14].
Learning this modularity can further alleviate task interrup-
tions [15]. Through multitask learning, the model can be
used to learn some generally purposed expressions, since
simultaneous learning of relevant tasks can provide inductive
bias. Performance can be improved due to knowledge transfers
across tasks.

III. APPROACH

MultiSQL is a multitask-learning-based approach to
NL2SQL. As Fig. 1 shows, it takes a deep learning model to
learn multiple tasks simultaneously. The deep learning model
consists of a dual coattention encoder and a multi-pointer-
generator decoder.

A. A Multitask QA Network

In MultiSQL, every task is formulated as a QA (Question
Answering) task. Multiple tasks are trained jointly using a
deep learning model, and knowledge is shared among tasks.
Task Unification. We design a TCR (Task-Content-Result)
template to unify all the tasks. Each task instance is described
with a task, content, and result, as Fig. 2 shows. During
training, MultiSQL takes three sequences as its inputs: a
content C' with [ tokens, a task ) with m tokens, and a
result A with n tokens. Each token is represented by a d¢;,p-
dimensional embedding.

Dual Coattention and Multi-Pointer. A task formed by the
TCR template often contains key information that constrains
the search space. MultiSQL uses dual coattention [16] for
presenting conditions for both sequences, compresses the
information with two BiLSTMs, applies self-attention [17]
to collect long-distance dependencies, and then uses two
BiLSTMs to get representations of the task and its content. The
multi-pointer-generator [18] decoder uses attentions over the
content, task, and previously output tokens to make a decision:
copying from the content, copying from the task, or generating
from a limited vocabulary.

Cross-task Transfer. MultiSQL facilitates sample-efficient
learning and knowledge transfers among tasks. Three multitask
collaborative training strategies can be used: joint learning
(training all tasks jointly), curriculum learning (training simple
tasks first), and anti-curriculum learning (training hard tasks
first).

B. Encoder

MultiSQL adopts a deep stack-based recurrent neural net-
work with a collaborative- and self-attention mechanism to
generate the content embedding and the task embedding. The
encoder takes six steps in the encoding process:

Step 1. Independent Encoding. A linear layer projects the
input matrices onto a common d-dimensional space:

CWl _ Cp'roj c Rle le _ Qproj c Rmxd

The projected representations are fed into a shared BiLSTM
BILST M;yq to get the independent encoded representations
Cind € R!*4 and Qind € Rixd,
Step 2. Alignment. The encoder obtains the coattended
representations by aligning encoded representations of each
sequence. The alignments are obtained by normalizing dot-
product similarity scores between the content sequence and
the task sequence:
softmax(CmdQ;d) = Seq softma:r:(deC’;d) = Syc
Step 3. Dual Coattention. These alignments are used to
compute weighted summations of a token in one sequence
and a relevant token in another sequence:

T T
chcind = Csum chQind = qum
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Fig. 1: An overview of the MultiSQL approach.
Task Content Result All transformations in the above equations are linear such
: AT ey 7 T . . . . . .
Translate Chinese to FURIEATIREIER 2 Tellme what the notestha¢ the multi-head attention representations maintain dimen-
English are for South Australia

SELECT notes from table
WHERE

‘Current Slogan’ =
‘South Australia

The table has column names...
Tell me what the notes
are for South Australia

Generate SQL statements
from neural text in
English

Fig. 2: Some TCR examples.

The coattended representations use the same weights to
transfer information gained from alignments back to the orig-
inal sequences:

S;—ccsum = Ceoa S;qum = Qcoa
Step 4. Compression. In order to compress embeddings from
dual coattention back to the more manageable dimension d,

we concatenate all of the four representations and feed them
into separate BiLSTMs:

BiLSTMcomC([Cproj; Cind; qum; Ccoa]) = Ccom
BiLSTMCOmQ([Qproj; Qind; Csum; Qcoa]) = Qcom
Step 5. Self-attention. We use multi-head, scaled dot-product

attention [17] to capture long distance dependencies within
each sequence.

o VT

Attention(X,Y, Z) = softmax{ ¥4
Vd

MultiHead(X,Y,Z) = [h1;--- ; hy|W°,

where h; = Attentz’on()N(W]X, ?Wf, ZWJZ)

sionality as d.

MultiHeade(Ceomy Ceoms Ceom) = Cmha
MultiHeadq(Qcoms Qcoms Qeom) = Qmha

We then use the projected, residual feedforward networks
(FFNs). The FNNs are equipped with ReLU activations and
layer normalization on the inputs and outputs (with parameters
U e R, Ve R

FFN(X)=max(0,XU)V + X
FFNC(Ccom + tha) = Cself S Rle
FFNQ(Qcom + tha) = Qself S Rde
Step 6. Encoding. Finally, we feed Cyer and Qserp into

two BiLSTMs BiLST Myinc and BiLSTMy;nq to get the
representations C'y;,, € R and Q p4, € R™* 4, respectively.

C. Decoder

MultiSQL’s decoder takes four steps in decoding:
Step 1. Self-attention. The decoder starts by projecting the
answer embeddings onto a d-dimensional space:

AWy = Aproj € R

Since recurrence and convolution are not contained in this
step, we add positional encodings to Ap.;:
nxd
Aproj + PE = App, € R"74,
sin( =) k is even;
10000 2d

(—=r)

10000 24

where PE[t, k]

=1 cos Otherwise.



We use self-attention so that the decoder is aware of
previous outputs and the content to prepare for the next output.
A residual FFN layer is applied to the content:

MultiHead a(Appry Apprs Appr) = Amna € R™*?
MultiHead AC((Amna + Appr); Cpins Cpin) = Age € R™X4
FFNA(Aac + Amha + App'r‘) = Aself S RnXd

Step 2. Getting Intermediate Decoder State. We next apply
a standard LSTM with attention to get a recurrent content state
¢; for time-step t. The LSTM produces an intermediate state
h; using the previous answer word Ai;ﬁf and recurrent content
state:

LSTM([AL )¢ 1), he—1) = hy € R

Step 3. Task and Content Attention. This intermediate state
is used to get attention weights Oth and a? , allowing the
decoder to focus on encoded information of the time step ¢:

softmax(Cin(Wahy)) = of € R
softmaz(Q fin(Wshy)) = al e R™
Content representations are combined with these weights

and fed through an FFN with tanh activation to form the
content state and the task state:

tanh(Wy[C i of s hy] = ¢ € RY

tanh(Ws [Q}—ma?; hi] =G € R?
Step 4. Multi-Pointer-Generator. The model may generate
tokens that are not in the task or the content. Thus additional

vocabulary tokens v are accessed. We obtain distributions over
tokens in the task, content, and the external vocabulary:

3 (af)i = pelwy) € R”

1iC; =Wy
Y ()i = py(wy) €R™
1:q; =Wy

softmax(Wy,¢:) = py(wy) € RY

Two scalar tune the importance of each distribution in
determining the output distribution:

o(WpolCt; hes (Asers)i—1]) = v € [0,1]
o (WeqlGe: hes (Aserf)i—1]) = A € [0,1]
Vp”(wt) +1- ’V)[APC(wt) +(1— )\)Pq(wt)] = p(w;)

A token-level negative log-likelihood loss is used through-
out the training process: £ = — ZtT log p(at).

IV. EXPERIMENTS

We have implemented MultiSQL and evaluated it on several
datasets. The evaluation is designed to answer the following
research questions:

o RQ1. Is MultiSQL more effective than singletask learning

methods?

¢ RQ2. Can MultiSQL be used to generate SQL statements

from queries in other languages (Chinese in this study)?

A. Setup

The experiment contains ten NLP tasks, each of which
is evaluated using one dataset. The ten datasets used in the
evaluation are listed in Table I. In particular, NL2SQL was
evaluated on WikiSQL (an open sourced dataset) and CnSQL
(a Chinese dataset we created). CnSQL' includes 1534 pairs
of Chinese queries and SQL statements. It was collected by
the human engineers from end-user queries in a Chinese HR
outsourcing platform (ezhiyang.com).

Several commonly used metrics are chosen: logical form
accuracy [2] for NL2SQL, BLEU [19] for Chinese-English
translation, and F1-Score for machine comprehension.

B. Results for RQ1

The pointer-generator seq2seq (S2S) model [18] is selected
for comparison. The results for comparing the singletask and
the multitask learnings are shown in Table 1. Here, (w/SAtt),
(+CAtt), (+QPtr), and (+ACurr) represent the S2S model with
an adjunction of the self-attention mechanism, the dual co-
attention mechanism, the task pointer, and the anti-curriculum
learning strategy, respectively.

1) Singletask Learning

The self-attentive (w/SAtt) mechanism [17] increases the
capacity of the S2S model of integrating information from the
task and the content. It improves the performance on most of
the tasks. For WikiSQL, this model approximates the state-of-
the-art (72.4%), but it does not use a structured approach.

We supplement the model with a coattention mechanism
(+CAtt) next. The performances on part of the tasks are
improved while decrease on the others and significantly reduce
on MNLI and MWSC. For these two tasks, since the S2S
baselines have the content concatenated to the task, the pointer
generator mechanism can copy words directly from the input.
In case that the task and the content are separated, the
effectiveness of the model may be reduced.

Thereafter, we add a task pointer (+QPtr) to the network,
which boosts the performance on MNLI and MWS. It also
improves performance on SQuAD to 75.5% in nF1, which
matches the performance of the first wave of SQuAD models
that utilize direct span supervision [16].

When tested on WikiSQL, the final model achieves logical
form accuracy of 72.6% and database execution accuracy of
80.4%.

2) Multitask Learning

During multitask learning, the S2S model performs worse
on many tasks than the singletask model, with a total score
of 483.6 points. However, the performance of the model is
getting better and better after the combination of (w/SAtt),
(+CAtt), and (+QPtr) sequentially. The score finally reaches
to 584.7 points.

Performances on tasks requiring heavy use of the external
vocabulary drop more than 50% from the S2S baselines until
(+QPtr) is added. In addition to a coattended content, the task
pointer utilizes a coattended task, allowing task information

Thttps://github.com/SimonCqChen/CnSQL



TABLE I: Results for the singletask and multitask learnings.

Task Dataset Singletask Multitask

S2S  w/SAtt  +CAtt  +QPtr  S2S w/SAtt  +CAtt  +QPtr  +ACurr
NL2SQL WikiSQL 60.0 724 72.3 72.6 45.8 64.8 72.9 74.0 78.7
Machine Translation IWSLT 25.0 23.3 26.0 25.5 14.2 23.6 29.0 26.1 29.7
Machine Comprehension SQuAD 48.2 68.2 74.6 75.5 47.5 66.8 71.8 70.8 74.3
Text Summarization CNN/DM 19.0 20.0 25.1 24.0 25.7 14.0 15.7 239 24.6
Natural Language Inference MNLI 67.5 68.5 34.7 72.8 60.9 69.0 70.4 70.5 69.2
Sentiment Classification SST 86.4 86.8 86.2 88.1 85.9 84.7 86.5 86.2 86.4
Semantic Role Labeling QA-SRL 63.5 67.8 74.8 75.2 68.7 75.1 76.1 75.8 77.6
Relationship Extraction QA-ZRE 20.0 19.9 16.6 15.6 28.5 31.7 28.5 28.0 347
Goal Oriented Dialogue wOZ 85.3 86.0 86.5 84.4 84.0 82.8 75.1 80.6 84.1
Semantic Parsing MWSC 43.9 46.3 404 52.4 52.4 43.9 37.8 48.8 48.4
Total Score - - - - 483.6  566.4 5438 5847 607.7

to flow directly into the decoder. The main reason is that it
is easy for the model to decide, if it can directly access the
task, whether generating output tokens is more appropriate
than copying.

By multitask joint learning with anti-curriculum strategy,
the logical form accuracy of NL2SQL reaches 78.7%, and the
database execution accuracy gets 86.1%.

C. Results for RQ2

The baseline for comparison is NL2SQL with Google’s
translator. The results show that MultiSQL obtains logical
form accuracy of 78% on CnSQL. It is 17% higher than that of
the baseline. The results also indicate that MultiSQL performs
well both on the human- and the machine-generated datasets.

V. CONCLUSION

MultiSQL is a multitask learning approach to generating
SQL statements from natural language queries. MultiSQL
leverages a deep learning model for jointly learning multiple
tasks such that the performance of NL2SQL can get improved.
The evaluation results show the effectiveness of MultiSQL.
It achieves accuracies that approximate those of the state-
of-the-art methods and outperforms the existing methods for
translating Chinese queries into SQL statements.

In the future, we will improve MultiSQL by introducing
other state-of-the-art language models. We also plan to feed
domain knowledge into MultiSQL, expecting that the deep
learning model can be further enhanced.
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