
SOLinker: Constructing Semantic Links between
Tags and URLs on StackOverflow

Abstract—Thanks to the strength of crowdsourcing, there is
a lot of useful information on StackOverflow, the most popular
Question and Answer (Q&A) platform in software engineering
area. These information can be treated as numerous URLs
(Uniform Resource Locators), which can be categorized into
URLs of Q&As and URLs in Q&As. The domain of former
ones is StackOverflow itself, while domains of latter ones are
miscellaneous, such as from some personal blogs and so on.
Although each Q&A has been manually assigned tags, relations
between URLs and tags are not clear enough. In this paper, we
propose SOLinker, a method to build semantic links between
various URLs and tags. Firstly, SOLinker identifies proper
relations from a predefined relation set between tags and URLs,
which is modeled as a text classification problem. Features are
extracted from content of Q&A, the URL and the tags list, and
classification algorithms are Logistic Regression and Gradient
Boosting Decision Tree, depending on the category of URLs.
Secondly, there exists a partial tagging problem, which means
for a URL in a Q&A, there are only a part of tags of the
Q&A relating to the URL. To address this problem, we propose a
semantic analysis method to analyze context of this URL and the
URL itself from both implicit and explicit aspects. Then SOLinker
will infer proper tags by the label propagation technique. Results
show that our method is feasible and practical in constructing
semantic links between tags and URLs in/of Q&As. In particular,
the F-Score of semantic relation identification is around 77%, 5%
higher than the other existing method, and F-Score of partial
tagging solving is around 87%.

I. INTRODUCTION

Nowadays, software developers do not create alone. Experi-
enced programmers share their knowledge by writing personal
blogs or answering questions in some online communities. All
these knowledge is good resources for programmers to further
promote themselves. Although these resources are separately
located on the Internet, StackExchange networks are a good
knowledge repository storing many of them [1]. On one hand,
programmers write solutions of questions asked by others
directly; on the other hand, they answer questions by listing
some URLs, like their blogs, in which question askers can
find solutions. One of the most popular StackExchange sites
is StackOverflow1, which owns more than 4 million registered
users and 11 million questions2.

However, these resources on StackOverflow lack of orga-
nization. Although each URL of Q&A on StackOverflow has
already been linked to tag(s) by human-beings, these links lack
of semantic interpretations; for instance, some Q&As describe
how to solve bugs, while some explain how a system works.
On the other hand, for those URLs in Q&As, there are even no

1http://stackoverflow.com/
2https://en.wikipedia.org/wiki/Stack Overflow
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Fig. 1. Example of Constructing Semantic Links and Partial Tagging Problem.

proper links between tags and them. An example of semantic
linkage is illustrated in Fig. 1. In Fig. 1, firstly, the URL of the
question is on the top of the figure. Because the asker wants to
seek some libraries of Machine Learning, the content of this
Q&A is labeled to Seeking-Something (S), and then linked to
tags of this Q&A. Secondly, there are two URLs in the answer
of the question, PyBrain and Theano, which are two famous
machine learning libraries of python. However, there are three
extra uncorrelated tags: c, c++ and java, in the tags list of
the question. This is called partial tagging problem. SOLinker
will choose proper tag(s) in the tags list for corresponding
URL, and then construct semantic links. As both PyBrain and
Theano are official documents (O), SOLinker marks relations
between tags and these two URLs as O.

There are many advantages of building semantic links
between URLs in/of Q&As and tags, and three of them are
listed: (1) Semantic Queries Supporting: For URLs of Q&As,
users have one more criterion to filter search results by their
usages. For URLs in Q&As, without semantic links, the search
engine of StackOverflow treats these URLs as common text,
regardless of latent meanings in them. Connecting these URLs
to tags can make search engine smarter by knowing the hidden
meanings in these URLs. (2) Understanding Tags Behaviors:
After constructing semantic links between tags and URLs on
StackOverflow, we can study behaviors of tags; for instance,
users have less questions about how to debug for tag machine-
learning than tag c++. (3) Semantic Annotation: Constructing
links between URLs and tags on StackOverflow is a kind of
semantic annotation for StackOverflow. On the other hand,
there are also relations between tags. If an ontology, described
relations between tags [2], is constructed, these semantic links
can be an enhancement of ontology, the other kind of semantic
annotation.

Due to increasing requirements, in recent years, the task has



attracted extensive attentions. Lucas et al. proposed a method
to classify URLs of Q&As from usages of them, and then
obtained a conclusion that this criterion can promote users’
search experience greatly [3]. However, features extracted in
their method are manually selected keywords. Carlos et al.
have labeled some URLs in Q&As manually to study how
software developers discover and disseminate innovations [4].
However, they have not proposed a method to labeled these
URLs automatically. To constructed semantic links between
tags and URLs in/of Q&As, conclusively, there are three
challenges: (1) For URLs of Q&As, we should consider how
to extract proper features to build a classification model;
(2) For URLs in Q&As, because SOLinker does not know
content in webpages of them (crawling pages of these URLs
is time-consuming), we can only infer the type of them from
these URLs themselves and contexts of them appearing in the
corresponding Q&A. (3) For URLs in Q&As, as the example
shown in Fig. 1, there exists a partial tagging problem, and we
should address this problem when linking these URLs to tags.

To address these challenges, we propose SOLinker to
create semantic links between tags and two kinds of URLs
on StackOverflow. Our method consists of three steps: (1)
Semantic Linkage Between URLs of Q&As and Tags. This
step is the easiest one, because we can obtain the full content of
Q&As and each Q&A has already labeled by their askers. The
main work in this step is to construct a text classification model
to classify these Q&As to predefined relations. (2) Semantic
Relations Identification for URLs in Q&As. SOLinker also
models this step as a classification problem, but differ to step
(1), for each URL in Q&A, we must extract features from
the URL itself and the context of the URL in the Q&A as
we cannot obtain the specific content in the webpage of the
URL. (3) Solving Partial Tagging Problem for URLs in Q&As.
We model this problem as a subset selection problem, which
selects the most relevant subset of tags from the tags list of the
Q&A. SOLinker will analyze the URL, the title and context of
the URL in the Q&A implicitly and explicitly to obtain some
initial tags. Then based on these initial tags, SOLinker will
infer the most proper tags by label propagation technique. In
particular, F-Score of semantic relations construction is around
77%, 5% higher than the other existing method, and F-Score of
partial tags solving is around 87%. Our main contributions can
be summarized as follows: (1) Proposing a text classification
algorithm to identify semantic relations between tags and
URLs of Q&As. (2) Proposing a URL classification algorithm
to identify semantic relations between URLs in Q&A and tags
without knowing contents of these URLs. (3) Proposing a
semantic analysis method to solve the partial tagging problem
appearing in semantic linkage between URLs in Q&As and
tags.

II. RELATED WORK

In this section, we first introduce methods of semantic
linkage, and then introduce methods of text classification and
some similar work to solve the partial tagging problem.

A. Semantic Linkage

To learn semantic lexicons from massive corpus, there
are two kinds of approaches: Pattern-based and Classification-
based. (1) Pattern-based methods focus on extracting semantic

relations based on predefined patterns [5][6] or extracted
patterns [7][8][9][10]. Hearst et al. proposed a method which
defined patterns such as X like Y to find synonymy between X
and Y from texts [5]. Then, based on these patterns, Kozareva
et al. recursively applied them to further increase the recall [6].
To learn some new patterns from existing patterns and cor-
pus, Michael et al. proposed a method, Basilisk [7], which
hypothesized the semantic class of a word based on collective
information over a large body of extraction pattern contexts.
Richard et al. proposed a set expansion-based method, in
which patterns were used to extract semantic relations from
semi-structured documents written in any markup language
and in any human language [8]. (2) Classification-based
methods focus on classifing words or documents into some
predefined types. Nadeau et al. summarized a serious of works
for entity-typing, which listed a lot of supervised classification
models and features [11]. Turian et al. propsed a feature-
level semi-supervised learning approach to learn the type of
documents or words, in which unsupervised word feature
derived from a large corpus is used to improve performance of
existing supervised models [12]. Ling et al. proposed a method
which modeled the semantic typing problem as a multi-class
multi-label classification task [13]. There are also many other
approaches to do the semantic linkage; for instance, graph-
based methods [14], label propagation-based methods [15],
clustering-based methods [16], knowledge-based methods [17]
and so on. We borrow the idea from classification-based
methods that firstly extract features from data and then apply
a classification algorithm to obtain the semantic type of data.

B. Text Classification

Text classification [18] is a very practical technique widely
used in tags recommendation [19], application reviews min-
ing [20] and so on. Features in text classification [18] are the
n-gram of words presented by tf-idf measurement or Bag-Of-
Word (BOW) model. To select or extract important features
from these raw features to further improve performance of
classification, supervised methods, like Mutual Information
(MI) selection, and unsupervised methods, like Principal Com-
ponent Analysis (PCA) and Latent Dirichlet Allocation (LDA),
are widely used [18]. With text data on StackOverflow, Lucas
et al. proposed a text classification to classify Q&A pairs
to five classes to assist software development [3]. However,
most features used in this method are all keywords extracted
manually, so their method is not fully automatically. When
constructing semantic links for URLs of Q&As, we borrow
their idea, but our method extracts a variety of features and
then applies dimensionality reduction techniques to learn some
hidden feature representation rather than manually selected
keywords.

URL classification is a special case of text classification,
which is widely used in identifying specific type of page [21],
like research homepage [22], and malicious web sites detec-
tion [23][24][25]. Features to classify URLs are extracted from
URL itself [21], such as top n-gram in URL, IP address and
so on, or/and from contents in webpages of URLs [22]. For
URLs in Q&As, Carlos et al. manually labeled some of them
and then studied innovation diffusion [4]. We borrow the idea
of some URL features extraction methods from Kan et al.’s
work[21] as we cannot obtain contents of URLs in Q&As.



We also borrow the idea from labeling work in [4], but our
approach is fully automatic.

C. Partial Tagging Problem

Partial tagging problem of URLs in Q&As is a new
problem proposed in our paper, so there is no existing work
directly targeting in this problem. However, there are some
relative works: tags recommendation and aspect extraction.
(1) Tags Recommendation focuses on recommending several
tags to a given document. Wang et al. proposed a tags
recommendation system called EnTagRec [19], in which it
combines the Bayesian Inference, Frequentist Inference and
spreading activation technique [26] to recommend tags for
StackOverflow. Mo et al. proposed a cross-sites tags recom-
mendation algorithm to recommend tags on StackOverflow to
repositories on Github [27]. (2) Aspect Extraction. Hu et al.
proposed a method to extract implicit and explicit aspects from
reviews to do sentiment analysis [28]. To solve partial tagging
problem, our method borrows the idea from these two kinds
of work. Firstly, our approach analyzes the URL, the title and
context of the URL in the Q&A implicitly and explicitly to
obtain a set of initial tags. Then, based on these tags, our
approach adopts spreading activation technique [26] to obtain
more relevant tags before selecting a most proper set of tags
to construct semantic links.

III. PROBLEM DEFINITION

Our method treats the semantic linkage problem as text
classification problem. To do text classification, the label set
is defined as Y, and features extracted from URLs and Q&As’
content are denoted by X. The goal of text classification is to
construct a classifier f(x) = argmaxyP (y|x) from some la-
beled data, donated by D = {(x1, y1), (x2, y2), ..., (xn, yn)},
where (xi, yi) ⊂ X× Y, (i = 1, ..., n). For an unseen instance,
represented by x′, where x′ ⊂ X, this classifier f(x′) can pre-
dict the right type of the instance in a relative high probability
(at least higher than random guessing). To construct semantic
links by text classification, from the content of websites, we
define a set of semantic relations between URLs and tags for
both URLs of Q&As and URLs in Q&As. We borrow the idea
in [3], considering four categories: How-to-do-it (e.g. how to
solve a bugs or use an API, etc.), Conceptual (e.g. definition of
concepts, best practices for a given technology, etc.), Seeking-
Something (e.g. book, tutorial, advice, recommendation, etc.)
and Others. This classifier is called URL Content Classifier.
For URLs in Q&As, borrowing the idea in [4], we define
the other set of semantic relations between URLs and tags
considering website type: Official Document, Blog, Q&A Post,
Wiki, Code Repository and Others. This classifier is called
URL Type Classifier.

On the other hand, for the partial tagging problem, we
defined it as a subset selection problem. For a URL u in a
Q&A, there is a tags list T in the Q&A. The most suitable
tags list for u are Tu ⊆ T . This problem is solved by Partial
Tagging Solver in SOLinker.

Fig. 2 is the overview of SOLinker. To construct semantic
links between tags and URLs in/of Q&As, the key issue is text
classification. (1) For a URL of Q&A, word-based and non-
word-based features are extracted from its tags list, title and
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Fig. 2. The Overview of SOLinker

body. To overcome the curse of dimensionality problem [29],
SOLinker reduces the dimension of word-based and tags
features before classifying by URL Content Classifier. Then,
semantic links between the URL and tags in the tags list are
constructed by Sematic Linker if the URL is not classified to
Others. (2) For a URL in Q&A, the first step is extracting
features from the URL itself, tags list and its context and
then reducing feature dimensions before classifying by two
classifiers, one by URL Type Classifier and the other by URL
Content Classifier. The second step is solving partial tagging
problem by Partial Tagging Solver, which applies explicit
analysis, implicit analysis and label propagation technique to
obtain a subset of tags list as target tags. Finally, semantic
links are constructed between this URL and these target tags
by Semantic Linker if it is not classified to Others.

IV. SEMANTIC RELATION IDENTIFICATION

To identify semantic relations between Tags and URLs,
SOLinker classifies URLs of/in Q&As to some predefined
labels mentioned in Section III. This is a text classification
task. In this section, we will introduce how to extract features
from raw data, how to do the dimensionality reduction and how
to classify. For URLs of Q&As, features are extracted from
contents and tags of Q&As, while for URLs in Q&As, features
are extracted from contexts of URLs appearing in Q&As,
URLs themselves and tags of Q&As (Because SOLinker does
not crawl webpages of these URLs, contents in these pages
are unknown.).

A. Feature Engineering for URLs of Q&As

Because for URLs of Q&As, we know contents of them,
features can be extracted from their tags lists and contents.

1) Features from Tags Lists: For each Q&A, there is a tags
list constructed by the question asker manually. In Fig. 1, the
tags list is: ”java, c++, python, c, machine-learning”. Firstly,
we get tags lists from all Q&As, and then do the tag cleaning
work to normalize tags in each list. The process of tag cleaning
is the same as Mo et al.’s work[27]: (1) Removing Tag Version
(e.g. ios-4.2 or ios5.1 will be rewritten to ios.), (2) Coping with
Synonyms3 (e.g. io.js will be rewritten to node.js.), and (3)
Splitting Complicated Tags (e.g. google-maps-sdk-ios will be
rewritten to ”google-maps, sdk, ios”.). Then a tags dictionary
can be constructed from all clean tags lists, in which there are

3The synonyms relations are in http://stackoverflow.com/tags/synonyms



TABLE I. AN EXAMPLE OF URL PARTITION

Sample URL http://www.cwi.nl:80/%7Eguido/Python.html
Partition by (1) (http, www, cwi, nl, 80, guido, python, html)
Partition by (2) (http, www.cwi.nl:80, /%7Eguido/python.html, , ,)

totally 657 tags. Then we represent each tags list to a vector by
BOW (Bag-Of-the-Word) model, which means, if a tag appears
in the list, then the corresponding dimension of its vector is
1; otherwise 0.

2) Features from Content: Our method divides content of
Q&A into two parts: (1) the title of Q&A and (2) the body
of Q&A. In Fig. 1, the title is ”Machine Learning Library?”
(”[closed]” is the title status, which is ignored in our method.)
and rest text in question and answer is all body. The reason
why we distinguish two kinds of text is that we consider to
classify a Q&A, the degree of importance for text appearing in
the title is not equal to that appearing in the body. Despite two
kinds of text, the process of transforming them to vector form
is the same. This transformation process contains following
steps: (1) For text in a Q&A, tokenize it and then remove all
punctuation characters, code fragments and xml labels (content
of Q&As is all written in xml format) appearing in both title
and body. (2) Do the stem operation4 for each word to get
the root of the word. (3) Select high-frequency bigrams and
trigrams (appearing at least 10 times) among all documents. (4)
Remove stopwords5 and low-frequency unigrams (appearing
less than 10 times in all documents). (5) Transform each
document by BOW model to the vector. After these five steps,
for each Q&A, two vectors are constructed, one for title,
and the other for body. Because after transformation, each
dimension in these vectors is corresponding to a word or a
phrase, we call this kind of features as word-based features.

On the other hand, SOLinker not only extracts word-based
features, but also 11 non-word-based features from content: (1)
a binary feature indicating whether the title is a question or
a statement; (2) two binary features indicating whether there
exists code fragment, wrapped by < code > in xml format, in
question body and in answer body ; (3) a feature counting the
number of URLs in the body; (4) three features counting the
number of words in the title, the question body and the answer
body; (5) two features counting the number of paragraphs,
wrapped by < p >, in the question body and the answer
body; (6) two features counting the number of elements in list,
wrapped by < li >, in the question body and in the answer
body.

B. Feature Engineering for URLs in Q&As

Because for URLs in Q&As, content of them is unknown,
as the crawling process is time-consuming. Features can be
extracted from their tags lists, corresponding Q&As’ content
and URLs themselves.

1) Features from Tags Lists and Q&A Content: Processes
of feature extraction from tags lists for URLs in Q&As are
the same as processes in Section VI A 1). We do not extract
features from title, because they have negative effect for
classifying URLs in Q&As, which will be discussed in the

4The stemming package is in http://www.nltk.org/api/nltk.stem.html.
5The stopwords list from http://www.textfixer.com/resources/common-

english-words.txt

experiments section. To extract word-based features from the
body, we consider the context of the URL rather than the whole
body, because text far from this URL is noise (this is shown
in the experiments section). As for non-word-based features,
they are extracted from the whole body as same as Section VI
A 2).

Next, we define the context of a URL. The body of question
and answer is written by xml format and can be thus serialized
by depth first traversing. In this sequence, we remain < p >
(paragraph) and < a > (URL) nodes and remove other nodes.
After that, the body can be represented by (n1, n2...nk), ni ∈
{p, a}. The w-window context of a URL node a is defined
as: all text in p with w forward and backward steps in the
sequence. For instance, for a sequence (p0, p1, a0, a1, p2), the
1-window context of a0 and a1 are the same, which is text in
p1 and p0. In our work, SOLinker only considers 1-window
context. After extracting the context, the feature vector for the
context is also constructed by the process described in Section
VI A 2).

2) Features from URLs: Although the content of the web-
page of URL is not available, features can be extracted from
the URL itself. We extract URL features from two ways:

(1) Word-based URL Features. This feature extraction
method treats each URL as a sequence of words. However,
tokenizing a URL is different from tokenizing text written in
natural language. We define separators to split URL as non-
digital characters and non-alphabet characters. Besides, an-
other separator is a Regular Expression (RE) %.2, for removing
characters by some special encodings. For example, in TABLE
I, the first row is a sample URL and the second row is splitting
it by this way (noted that %7E is the RE separator). After
tokenizing, high-frequency bigrams and trigrams (appearing at
least 10 times among all URLs) are selected and low-frequency
unigrams (appearing less than 5 times among all URLs) are
removed. Then we construct URL word-based feature vector
by BOW model.

(2) Non-word-based URL features. This feature extrac-
tion method applies the urlparse6, to break URL string up in
6-tuples (scheme, netloc, path, params, query, fragment). The
third row of TABLE I illustrates an example of splitting the
URL in first row in this way. For scheme, we use one feature
to indicate different kinds of schemes; for netloc, we select
top-frequency (at least appearing 10 times in all URLs) ones
and then for each top netloc, we give it a binary indicator; for
path, we use one feature to indicate the type of file extension;
for params, we give a binary indicator to indicate whether there
exists parameters in URL (the same with query and fragment).
Besides, there are three other non-word-based features: (a) the
length of URL; (b) whether this URL is in a list (wrapped by
< li >); (c) whether text in last < p > end with colon.

C. Dimensionality Reduction

Because the number of dimensions of tags feature vectors
and word-based feature vectors are very large, it will lead to
the curse of dimensionality problem when classifying [29].
To overcome this problem, before classification, SOLinker
will do the dimensionality reduction process. To reduce the

6https://docs.python.org/2/library/urlparse.html



dimension of these vectors, there are two kinds of methods:
(1) Feature Selection, which tries to find a subset of the
original features; and (2) Feature Extraction, which focuses
on extracting some hidden features from feature vector rather
than simply selection. SOLinker firstly applies feature selection
techniques to select important features and then applies feature
extraction techniques to extract hidden features.

1) Feature Selection: In this step, SOLinker calculates the
Mutual Information (MI), derived from information theory,
for each dimension, and then filters the dimension with low
MI. We calculate the maximum values of mutual information,
shown in Eq. (1), over different class for one dimension. In
Eq. (1), y is a specific class and x is a specific dimension.
Because the Mutual Information selection can be only adapt
to discrete feature, we use BOW model to represent tags list
features and word-based features rather than tf-idf model.

MI(x) = maxy log
p(x|y)
p(y)

(1)

2) Feature Extraction: After feature selection, SOLinker
applies the PCA (Principle Component Analysis) tech-
nique [30] to further extract some hidden features. PCA is
one of popular unsupervised feature extraction techniques. The
insight of it is using an orthogonal transformation to convert
a set of observations of possibly correlated variables into a
set of values of linearly uncorrelated variables called principal
components. To do the PCA, we use the API provided by a fa-
mous python machine learning library scikit-learn7. SOLinker
also tries to apply LDA (Latent Dirichlet Allocation) [31], a
popular topic model to do the dimensionality reduction for
text data, to do feature extraction work, but the performance
of LDA is worse than that of PCA (shown in the experiments
section).

D. Classification Algorithm

We performed a comparison between different classifi-
cation algorithms to find the best one. In the classification
process, we experiment totally six classification algorithms:
Logistic Regression with L2-norm (LR), Support Vector Ma-
chine with Radial Basis Function Kernel (SVM), Naive Bayes,
Decision Tree (C4.5), Random Forest (RF) and Gradient
Boosting Decision Tree (GBDT). APIs of all these algorithms
we used are all provided by scikit-learn.

V. PARTIAL TAGGING SOLVER

Partial tagging problem exists in semantic linkage for
URLs in Q&As, because for URLs of Q&As, tags of them
are all assigned manually. However, the tags list of a URL of
Q&A is for the whole Q&A rather than for a specific URL
in this Q&A. To link URLs in Q&As with tags, selecting
target tags is important work. This problem can be solved
by tags classification [19] [27], which uses features extracted
from the URL, its context and its title, to predict a set of
suitable target tags. We tried this method, but performance
of it is not promising (shown in the experiments section). By
analyzing data, if we use 1-window context, the context feature
will be very sparse as there are only a few words in context.

7http://scikit-learn.org/stable/

Although we can use mutual information selection to solve
this problem, as the number of labels we want to predict (all
tags on StackOverflow) is very large, the mutual information
for each dimension will be too low. However, if we use large-
size windows context, there will be much noise, as context far
from the URL has low semantic relation with it.

To address this problem, we propose a semantic anal-
ysis method. Firstly, SOLinker analyzes 1-window content,
the question title and the URL explicitly, then applies tags
classification technique to analyze them implicitly, and finally
applies label propagation technique [26] to find target tags.

A. Explicit Analysis

For a URL in Q&A, we consider u = {C,U,A,QT}, in
which C is 1-window context, U is the URL itself, A is the
anchor text and QT is the question title. Explicit analysis tries
to apply string similarity techniques to obtain a set of obvious
tags. Firstly, we tokenize all elements of u. Content C, the
anchor text A and the question title QT are written by natural
language, and thus they can be tokenized directly. As for the
URL U , we apply the tokenized method mentioned in Section
IV B. Then, for each token, we apply the ratio of Levenstein
distance8, based on the Levenstein distance and in range [0, 1],
to calculate the similarity between all tokens and all tags on
StackOverflow. If the similarity between a token and a tag is
high (greater than 0.8), then this tag is a candidate. Besides,
SOLinker considers the unigram, bigram and trigram form
of tokens to calculate the similarity at the same time. After
explicit analysis, SOLinker can obtain a set of candidate tags.

B. Implicit Analysis

Sometimes, SOLinker cannot obtain any candidate tags
from explicit analysis, so SOLinker will do implicit analysis.
Implicit analysis tries to apply tags classification technique
to obtain a distribution among all tags. Based on tokens in
the explicit analysis step, SOLinker constructs a feature vector
by combining four word-based vectors extracted from context
tokens, URL tokens, title tokens and anchor text tokens, by
method mentioned in Section IV A. As we analyze, there
are too many labels; therefore, the performance of mutual
information feature selection is poor. We apply PCA directly
to reduce the dimension of the feature vector before applying
Naive Bayes to get a tags distribution for each URL.

C. Label Propagation

After explicit analysis and implicit analysis, we can obtain
a set of candidate tags and a tags distribution and they should
be merged. Our composition strategy is that for each tag
in candidate tags, SOLinker will add 1/n to corresponding
dimension in tags distribution, where n is the total number of
candidate tags, and then the new tags vector denoted by TD.
For example, in Fig. 1, for URL PyBrain, through explicit
analysis, we can obtain a set of candidate tags {python,
pybrain, machine-learning}, and through implicit analysis,
supposed, we can obtain a tags distribution {python: 0.25, py-
brain: 0.25, machine-learning:0.25, deep-learning:0.25}. After

8The library we used to calculate this distance is in
https://github.com/ztane/python-Levenshtein/
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Fig. 3. An Example of Label Propagation in One Iteration

composition, the vector changes to {python: 0.58, pybrain:
0.58, machine-learning:0.58, deep-learning:0.25}.

To infer more associated tags, we apply a technique named
label propagation [26][27]. The inputs of label propagation are
a similarity matrix S, where each element si,j in S is the
similarity between the tagi and the tagj , and the initial state
of tags which is TD in our context. During the process of label
propagation, for each tag in TD, in one iteration, it propagates
its weight to other tags with corresponding similarity. Fig.
3 shows an example of an iteration of label propagation.
Supposed we have a document labeled by {deep-learning: 0.7,
rnn: 0.0, css: 0.0} and tags similarities are shown in Fig. 3.
After an iteration, the deep-learning propagates to rnn as they
have 0.5 in similarity, and thus the vector becomes {deep-
learning: 0.7, rnn: 0.35, css: 0.0}. To construct the similarity
matrix, we use the conditional probability between two tags,
shown in Eq. (2). In Eq. (2), P (tagi, tagj) is the co-occurrence
probability that tagi and tagj appear in the same tags list,
and P (tagj) is the probability that tagj appears among all
tags lists. On the other hand, to overcome over propagation
problem, if the similarity between two tags is lower than 0.3,
then we set it to 0. And the propagation step is set to one.

si,j = P (tagi|tagj) =
P (tagi, tagj)

P (tagj)
(2)

D. Target Tags Selection

After label propagation, SOLinker will obtain a final tags
distribution. To solve the partial tagging problem, firstly, we
select the tag probability for each tag in tags list of the
Q&A from the final tags distribution, and then normalize
them. Finally, we select tags with high probability (greater
than 0.30) from the tags list as target tags of the URL. For
instance, in Fig. 1, there are two URLs in the Q&A, PyBrain
and Theano. For PyBrain, it is labeled to {python: 0.78, py-
brain: 0.78, machine-learning:0.78, deep-learning: 0.32, rnn:
0.125} through label propagation. The tags list of the Q&A is
”java, c++, python, c, machine-learning”, so selected tags are
{python: 0.78, machine-learning:0.78}. After normalization,
the vector becomes {python: 0.50, machine-learning:0.50},
and both probabilities of elements are greater than 0.30;
therefore, target tags are python and machine-learning.

Algorithm 1 describes how to solve partial tagging prob-
lem. In line 1, it does the explicit analysis and then obtains a set
of candidate tags TC; then, in line 2-4, it extracts word-based
features and does the dimensionality reduction before doing

implicit analysis. Line 5 merges TC to TD, and tags in the
tags list are selected from TD in line 6. After normalization
(line 7), high-probability tags are selected as target tags TT ,
in line 8.

Algorithm 1 Partial Tagging Solver
Input:

URL Information u = {C,U,A,QT};
The Similarity Matrix S;
Naive Bayes Classifier NB;
The Tags List of Q&A TL;

Output:
Target Tags TT

1: TC = explicitAnalysis(u)
2: FE = wordBasedFeatureExraction(u)
3: FE ← PCA(FE)
4: TD = implicitAnalysis(FE,NB)
5: TD = composition(TC, TD)
6: T ← tagSelection(TD, TL)
7: T ← normalize(T )
8: TT = highFreq(TT )
9: return TT ;

VI. SEMANTIC LINKER

After obtaining semantic relations between tags and URLs
of/in Q&As, and solving partial tagging problem for URLs in
Q&As, semantic links can be constructed. (1) For a URL of
Q&A, it is linked to tags in its tags list with the same semantic
relation, which is classified by URL Content Classifier. (2)
For a URL in Q&A, it is linked to tags selected by Partial
Tagging Solver with same semantic relation(s). Because for
URLs in Q&As, SOLinker totally trains two classifiers, URL
Content Classifier and URL Type Classifier, some links may
contain two kinds of semantic relations. If URLs in/of Q&As
are classified to Others, then SOLinker will remove this kind
of semantic links.

For example, in Fig. 1, the Q&A is classified to Seek-
Something (S); therefore, the URL of it will be linked to all
tags in the tags list with S. For URLs in this Q&A, pyBrain and
Theano, they are both classified to Official Document (O) by
URL Type Classifier, and Others by URL Content Classifier,
and tags of them are python and machine-learning selected by
Partial Tagging Solver; therefore, both these two URLs will
be linked to python and machine-learning with O, while the
Others label will be ignored.

VII. EXPERIMENTS

In this section, we first present our experimental settings
and then analyze experiment results. In SOLinker, we concern
performances of (1) URLs of Q&As classification, (2) URLs
in Q&As classification, and (3) Partial Tagging Solver.

A. Experimental Settings

We select totally 1,200 Q&As from the data dumps of
StackOverflow9, to conduct experiments. In these Q&As, there
are totally 1,000 URLs. To validate our approach, the first

9https://archive.org/details/stackexchange
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Fig. 4. Results of Model Selection for URLs of Q&As Classifier

thing is to construct ground-truth data. We asked ten master
students major in computer science to label these URLs of/in
Q&As. As for the evaluation of partial tagging problem, these
students are asked to select a subset of tags in the tags list
of the corresponding Q&A, for each URL in it. We use
Precision, Recall and F-Score to measure the performance of
our method. Besides, results in the following section are all
from the average of 5-cross validation.

B. URLs of Q&As classification

The experiment consists of three sub-experiments: model
selection, feature contribution and model comparison.

1) Model Selection: Model selection focuses on comparing
performances of different dimensionality reduction algorithms
and classification algorithms. For dimensionality reduction,
we compare performances of three algorithms: Mutual Infor-
mation (MI) selection, Principle Component Analysis (PCA)
and Latent Dirichlet Allocation (LDA). For classification al-
gorithms, we compare performances of six algorithms: Ran-
dom Forest (RF), Support Vector Machine with Radial Basis
Function Kernel (SVM+RBF), Decision Tree C4.5 (DT), Naive
Bayes (NB), Logistic Regression with L2-norm (LR+L2) and
Gradient Boosting Decision Tree (GBDT). Results are illus-
trated in Fig. 4, in which horizontal axis donates different
classification algorithms, vertical axis for the value of F-Score
and bars with different color represent different dimensionality
reduction techniques. In Fig. 4, results of raw features (features
without any dimensionality reduction) among all classification
algorithms are not promising. However, after adopting Mutual
Information (MI) as criteria to select some word-based features
and tags features, the dimension reduces from 2631 to 578, and
F-Scores of all models increase sharply, except the SVM+RBF
classifier. Then, we try to adopt PCA and LDA to reduce the
dimension for tags features and word-based features directly.
It is clear from the figure that performances of RF, DT and
LR+L2 are worse than those reduced by MI, while, perfor-
mances of PCA in SVM+RBF and LDA in NB and GBDT are
better than those reduced by MI. Next, we use MI as criteria
to select some features and then apply PCA to extract some
hidden features. The number of dimensions is reduced to 116,
far less than that of dimensions of raw data, but performances
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of almost all models increase dramatically except SVM+RBF.
Finally model with the best performance is trained by Logistic
Regression with L2-norm (0.772 F-Score), whose features are
reduced by MI and then by PCA. Conclusively, dimensionality
reduction is an important process, which not only reduces the
dimension of features to decrease the training time, but also
improves the performance of classification.

2) Feature Contribution: This experiment focuses on
studying how much each feature contributes to the classifica-
tion (features are selected and extracted by MI and PCA). To
classify URLs of Q&As, there are totally four kinds of features,
which are non-word-based features, features extracted the tags
list and word-based features extracted from body and title.
Because model with best performance for classifying URLs
of Q&As is Logistic Regression with L2-norm, results in this
experiment, shown in Fig. 5, are all obtained by this model. In
Fig. 5, the bar in black is the F-Score of model with all four
features and grey bars are F-Scores of models with features
except the feature in vertical axis. Therefore, the larger the
difference between value of the black bar and that of a grey bar,
the more important that feature is. It can be seen from Fig. 5,
word-based features extracted from title is the most important,
followed by ones extracted from body. Although non-word-
based features and tags features have less contributions than
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features extracted from title and body, they also have positive
effect for classification.

3) Model Comparison: This experiment compares the per-
formance of SOLinker and that of the other method proposed
by Lucas et al. [3], which only uses some manually selected
keywords features and a few features extracted from xml.
Features in SOLinker are extracted from various information,
and the keywords selection is done by the MI selection step
automatically. Also, SOLinker applies PCA to obtain some
latent features. Fig. 6 illustrates results of model comparison
by Precision, Recall and F-Score. In Fig. 6, black bars show
results of SOLinker, while grey bars for those of Lucas et al.’s
method. Because features they used are a subset of ours, values
of Precision, Recall and F-Score of our method are all higher
than those of Lucas et al.’s method. To sum up, the F-Score
of semantic relation construction by SOLinker is around 77%,
about 5% higher than Lucas et al.’s method.

C. URLs in Q&As classification

The experiment consists of three sub-experiments: the
performance of URL Type Classifier, that of URL Content
Classifier and how the number of context windows affects final
results. Carlos et al. also labeled some URLs in Q&As and
then studied the innovation diffusion [4], but labels are as-
signed manually, while SOLinker does this work automatically,
so we cannot compare with their work.

1) Performance of URL Content Classifier: This experi-
ment evaluates the performance of URL Content Classifier for
URLs in Q&As. Fig. 7 illustrates results of model selection.
Also, we compare the performance of different dimensionality
reduction algorithms and classification algorithms. In Fig. 7,
before doing dimensionality reduction, performances of all
models are poor. MI feature selection still works well in reduc-
ing dimension. Finally, GBDT achieves the best performance,
reaching 0.695 F-Score. When achieving this value, features
are also first reduced by MI selection and then PCA. However,
the F-Score of URLs in Q&A Content Classifier (0.772) is
lower than that of URLs of Q&As Content Classifier (0.695).
Because for URLs of Q&As, contents of them are known,
which are Q&As themselves, while for URLs in Q&As,
contents of them are unknown. To prevent crawling contents
of them, which is time-consuming, SOLinker can only classify
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them by their contexts and URLs. Therefore, information of
URLs in Q&As providing to SOLinker to do the classification
is less than that of URLs of Q&As, which is the reason that
URL Content Classifier performs worse in URLs in Q&As
than in URLs of Q&As.

Fig. 8 illustrates results of feature contribution. In URLs
Content Classifier for URLs in Q&As, there are totally four
kinds of features: tags features, non-word-based features, and
two word-based features extracted from contexts and URLs.
Compared with features to classify URLs of Q&As, title
features are not used. Because from the Fig. 8, if title fea-
tures are involved, the performance of model decreases from
0.695 to 0.667, which means that title features have negative
contributions to classification. Because if there are many URLs
in a Q&A, these URLs have the same title but may belong to
different class, title will become noise from model learning. As
for other features, URL features contribute the most, followed
by non-word-based features and tags features.

2) Performance of URL Type Classifier: This experiment
is used to evaluate the performance of URL Type Classifier.
Fig. 9 illustrates results of model selection. It is clear that
classifying URLs by their types achieve better performance
than by their contents for URLs in Q&As. The best model
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TABLE II. HOW DOES THE WINDOWS SIZE AFFECT FINAL RESULTS

n-window(s) URL Type Classifier URL Content Classifier
1 0.885 0.695
2 0.845 0.672
3 0.811 0.630

All 0.801 0.613

is Logistic Regression with L2-norm, at 0.885 F-Score. Also,
the dimensionality reduction step greatly promotes the final
performance of classification. Fig. 10 shows the feature con-
tribution in URL Type Classifier. Same with URL Content
Classifier, for URLs in Q&As, features extracted from title
have negative contributions to model construction. However,
features extracted from URL have dramatically positive affec-
tion, followed by non-word-based features. Because to classify
URL by its type, the domain part of a URL plays an important
roles. Through observing relations between features and types,
domain ”wikipedia” has a strongly correlation to label Wiki,
domain ”github” and ”sourceforge” are related to label Code
Repository, ”blog” to label Blog and ”stackoverflow” and
”stackexchange” to label Q&A Post. Due to these strong
correlated features, the performance of URL Type Classifier
are better than that of URL Content Classifier.

3) Context Windows Affection: To classify URLs in Q&As,
we extract word-based features from contexts. In Section IV,
we define n-windows context. This experiment shows how this
n affects the final performance. TABLE II shows results of
this experiment, in which the first column is the value of n
(”All” means we use full body of the Q&A), the second colum
shows the F-Score of URL Type Classifier and the third column
shows that of URL Content Classifier. From the table, when
the value of n increases, the performance decreases in both
URL Type Classifier and URL Content Classifier. From this
experiment, we can conclude that context far from the URL has
less semantic relations to it and is noise for classification. This
is because if there are many URLs in a Q&A, and we use full
body to extract word-based features, then all these URLs have
a same feature vector. If labels of these URLs are different,
then the same feature vector will correspond to different labels
and thus becomes noise.
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D. Partial Tagging Solver

This experiment is to validate the performance of partial
tagging solver. In partial tagging solver, firstly we apply
Explicit Analysis (EA) and then Implicit Analysis (IA) before
applying Label Propagation(LP) to obtain associated tags. Fig.
11 illustrates results of this experiment. From Fig. 11, if we
only apply EA to solve this problem, it can achieve a high
Precision (0.927) but low Recall (0.312). This is because, in
many cases, there is no tag appearing in context, URL, title
or anchor text directly. IA apply Naive Bayes to predict tags,
but the performance of it is not very high. By combining IA
and EA, the Recall is still not good. However, if we apply
LP after EA and IA, the performance has a dramatic rise, with
the highest Recall (0.835) and F-Score (0.872). This is because
sometimes tags find by EA and IA are not in the tags list, but
they have high similarity with tags in the tags list, which can
be propagated from other tags by label propagation.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we propose SOLinker, a semantic linkage
constructor between tags and URLs in/of Q&As. Firstly,
SOLinker identifies proper relations from predefined relations
set between tags and URLs, which is modeled as a text
classification problem. Features are extracted from text of
Q&A, the URL and tags, and classification algorithms are
Logistic Regression and Gradient Boosting Decision Tree,
depending on the category of URLs. Secondly, to address
the partial tagging problem, we propose a semantic analysis
method to analyze context of this URL and the URL itself
from both implicit and explicit aspects. Then SOLinker will
infer proper tags by the label propagation technique. Results
show that our method is feasible and practical in constructing
semantic relations between tags and URLs on StackOverflow.

B. Future Work

Our work can be further improved from following four
aspects: (1) More Semantic Relations. The set of relations



can be further refined to construct more semantic annota-
tions, which can be done by adding more labels to URL
Content Classifier and URL Type Classifier or constructing
other classifiers. (2) Partial Tagging Problem of Relations.
SOLinker constructs the same semantic link between a URL
and corresponding tags list. This step can be further refined
by linking the URL to each tag in the tags list semantically.
For instance, in Fig. 1, the question asker want to seek some
libraries of machine learning; therefore, the seek-something
link should be constructed only between the URL and the tag
machine-learning. (3) Multi-relations between a Tag and a
URL for URLs of Q&As. SOLinker only links the URL to a
tag with one semantic relation. However, sometimes, there are
multi-relations between a tag and a URL; for instance, some
questions contains several sub-questions, some of them are
Seeking-Something while some are How-to-do-it. (4) Semantic
Querying. Once semantic annotations are constructed, they
can promote the searching experience by semantic querying.
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