
SatisIndicator: Leveraging User Reviews to Evaluate
User Satisfaction of SourceForge Projects

Zhenzheng Qian∗, Beijun Shen†, Wenkai Mo‡ and Yuting Chen§
∗†‡§School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai, China

Email: bjshen@sjtu.edu.cn

Abstract—The quality of a software project is important for
users, as it may incur high cost when a user or a company
happens to pick up a software project with low quality. In
recent years, many software quality assessment models start to
take user satisfaction as an important metric for measuring the
software quality. However, user satisfaction on a software project
may not be evaluated precisely. In this paper, we proposed a
novel approach called SatisIndicator to automatically evaluate
the user satisfaction from user reviews which implicate user
opinions. The essential idea of SatisIndicator is to (1) use a
topic model to cluster reviews of a software genre into different
topics and calculate their weights, (2) take sentiment analysis
to calculate the sentiment strength of user attitudes, and (3)
match attitudes with corresponding topics and calculate user
satisfaction. SatisIndicator also applies Wilson Interval to punish
the software with few reviews in order to keep fairness during
evaluation. We have evaluated SatisIndicator on ten software
genre datasets on SourceForge.net. The evaluation results show
that when softwares have both sufficient and insufficient reviews,
SatisIndicator performs 35% higher than baselines at p@3, 15%
higher than baselines at p@15 and over 85% Spearman Coef-
ficiend. When softwares have insufficient reviews, SatisIndicator
performs 30% higher than baselines at p@3, 15% higher than
baselines at p@15 and over 60% Spearman Coefficiend.

Keywords—User satisfaction, Sentiment analysis, User review
analysis, Topic model

I. INTRODUCTION

Many software projects are accessed by end-users, pro-
grammers and commercial companies, for completing specific
computation tasks and/or speeding up their software develop-
ment. Meanwhile, the quality of the software projects is still
a threat to the use of these projects: it may incur high cost
when a user or a company happens to pick up a software
project with low quality. Several works have been done to
evaluate source codes like: Code measurement [1], [2], [3].
It extracts code features that high quality software project
products source codes have, then evaluates the quality of a
new software product using these features.

In this paper, we concentrate on evaluating the user
satisfaction from user reviews. As in some well-known
software quality models (e.g., the quality-in-use model in
ISO/IEC25010 [4]), user satisfaction is the most difficult
characteristic to evaluate automatically.

Some challenges do exist when we evaluate user satisfac-
tion:

Challenge1: A user review may have several attitude as-
pects, and different attitude aspects have different importance
degree

We cannot view them as the same. It is a hard job to find
out which topic an attitude aspect belongs to and to weight
topics. We use topic model to cluster all reviews of a software
genre, to get topics that users care about and the weight of
each topic.

Challenge2: User reviews are subjective data, it is hard to
evaluate them quantitatively.

Traditional sentiment analysis [5], [6], [7], [8], [9] can be
adopted to partly overcome this challenge. But to completely
overcome the challenge, we need to formulate the problem of
calculate user satisfaction.

Challenge3: About 67% softwares only have one or two
reviews.

It is hard to evaluate user satisfaction with few reviews.
Because if there are few reviews can be used to analyze, the
confidence level will decrease. For instance, a software with
one hundred reviews and 50% of them are positive will has
higher confidence level than a software with two reviews and
50% of them are positive. Wilson Interval is used to punish
the software with insufficient reviews.

In this paper we proposed a novel approach, SatisIndicator,
to evaluating user satisfaction from user reviews automatically.
User reviews implicate the attitude information of the users.
Furthermore, almost all the software project download plat-
forms provide comment function to users. Users can write
down their subjective attitudes of the software project on the
platform after they downloaded and experienced it. What we
do is to design a fine grain approach to evaluate the user
satisfaction and make the results close to what human evaluate.
First, topic model is applied to calculated the weight of user at-
titudes. Then, improved recursive neural tensor network is used
to help analyzing sentiment strength of user attitudes. Finally,
we compute the user satisfaction using attitudes sentiment
strength times corresponding weight. And Wilson Interval is
applied to punish the software with insufficient reviews. Since
SatisIndicator use user attitude aspect rather than user review
as the smallest unit to calculate the user satisfaction, the result
will be more similar to which is calculated with by human.

This paper makes the following contributions:

1) We formulate the problem of calculating user satis-
faction from reviews. Which makes user satisfaction
can be calculated automatically like objective data.

2) We present SatisIndicator as a novel approach to
tackle this problem, which evaluate user satisfaction
from a fine grain of every user attitude aspect.

3) We do exhaustive experiments on ten software genres
in SourceForge, in which empirical results show that
SatisIndicator has 35% higher than baselines at p@3,
15% higher than baselines at p@15 and over 85%
Spearman Coefficient. And when softwares have few
reviews SatisIndicator has 30% higher than baselines
at p@3, 15% higher than baselines at p@15 and over
60% Spearman Coefficient.

The remainder of this paper will be as follow. We will talk
about the overview of our approach and the detail realization
phases in the second section. The third section is experiment,
we are going to show the accuracy of SatisIndicator, and the
performance on real data set. In the forth section, we will talk
about some related works. The conclusion is at section five.

II. APPROACH

A. Overview

In this section, we will show the overview of our approach.
We divide our approach into three phases in Fig.1: 1) In the
first phase, we use natural language processing method to
process user reviews, classify the same genre’s reviews into
informative reviews and non-informative reviews, use topic
model to cluster informative reviews in the same software
genre to get topics that users care about, and calculate the
weight of each topic. 2) In the second phase, for a particular
software reviews, we extract attitude aspects and discover pure
attitude reviews and calculate their sentiment strength. 3) In the
third phase, we match attitude aspects and pure attitude reviews
with topics, calculate the user satisfaction of a software using
what attitude’s sentiment strength times corresponding topic
weight, and apply Wilson Interval to punish softwares with
few reviews.

B. Computing the Weight of Every Topic

Pre-processing data. Before using the reviews data, we
need do some regular nature language processing (NLP) on
them. The pre-process including: 1)tokenization: split sentence
or document into words. 2)To lower case: transfer all words
to lower case. 3)Stopword removal: delete stopword like “it”,
“is”, “and”, “I”. 4)Lemmatization: reduce different inflected
forms of a word to their basic lemma. For example, transfer
“working”, “worked”, “works” to “work”. 5)Finding high-
frequency bigrams: add an underline between two adjacent
words which co-occur frequently but have different meanings
when they show up alone. An example is that words “open”
and “source” are co-occurrence in high frequency, but they
respectively has different meaning when used alone. We can
add an underline between them and make them a new word
“open source”. We ignore bigrams appearing less than 3 times.

Identifying informative Reviews. In software project
community, we can get lots of user reviews. But not all of them
are useful. We define advertisements, and other irrelevant texts
containing no attitude (e.g., questions, answers, and random
texts) as non-informative reviews. For example, advertisements
like“what Jeffrey replied I am amazed that a mother can profit
9732 Dollars in one month on the computer. did you look at
this link (contact numbers also available on home page) Lazy-
Cash9.Com”, questions like “How can I play mp4 format”,
answers like “The blue button which is besides the logo.”

and random texts like “kshfabfjshgdjvbg” are non-sense to our
work, sometimes even have negative effect on our topic results.
So we need to filter non-informative reviews out of informative
reviews. We use the Naive Bayes classifier based on bigrams
realized by lingpipe1 (since it has the highest precision among
other classifiers in lingpipe) to do this. There is another kind
of special reviews which also belong to informative reviews
but has no attitude aspects, called pure attitude reviews For
example, “Good job!”). Pure attitude reviews are about 40%
in all software reviews in SourceForge.net.

Clustering User Reviews. We need to find out which
topics users care about and weight them. We also need topics
that have semantic relation rather than just literal repetition.
For example “The video player can only play a little format
videos” and “It can open the mp4 format.”, traditional cluster-
ing methods using cosine distance can only capture the explicit
similarity between them, like “format”. In order to further
explore the implicit semantic relations between sentences, we
apply topic model to get the topic representation of each
sentence.

There are two main types of topic model, Probabilistic
Latent Semantic Indexing (pLSI) [10] and Latent Dirichlet
Allocation (LDA) [11]. We use LDA to cluster user reviews,
because LDA can solve problems of over fitting and difficult
assigning probability to a document outside of the training set
in pLSI.

We can view LDA as a three layers Bayes model. A
document is generated in the LDA model as follow:

1) Choose θj , a topic-document Multinomial distribu-
tion from the Dirichlet distribution on hyper parame-
ter α. j ∈ {1,,M}, M is the number of reviews.

2) Choose φk, a word-topic Multinomial distribution
from the Dirichlet distribution on hyper parameter β.
k∈ {1,,K}, K is the number of topics.

3) For each of the word position j, i where j ∈
{1,,M}, and i ∈ {1,, Nj}, Nj is the number
of word in review j. Iteratively choose a topic zj,i
from Multinomial distribution(θj) and choose a word
wj,i from Multinomial distribution(φzj,i).

Since α, β can be set by us and every word in a review is
known, we can get two distributions (review-topic distribution
P (Z|R) and topic-word distribution P (W |Z)) by using LDA.
The number of topics will impact the topic weight with a
great degree, we must make sure it is suitable. We use the
method mentioned in [12] to choose the suitable number of
topics. Calculate the log-likelihood by changing the number of
topics T and choose the k as topic number when log-likelihood
reaches a peak at T = k (as Eq.(1) shown).

logP (W |T) ≈ log

N∏
i=1

P (wi) =

N∑
i=1

log

T∑
k=1

P (wi|zk)P (zk)

(1)

P (zk) =

M∑
j=1

P (zk|rj)

M
(2)

1http://alias-i.com/lingpipe/

z
reviews of a	
software
genre

topics weights

z
reviews of

one software

identifying informative
reviews

pre-processing	data

clustering user reviews

computing topics	
weights

extracting attitude	
aspects

analyzing sentiment	
strength

review-topic
distribution

topic-word
distribution

attitudes
sentiment	strength

matching	attitudes	to	
topics

calculating software’s	
user satisfaction

user	satisfaction

compnent data

Phase1.	Computing the	weight	of	every	topic	

Phase2.	Analyzing	attitudes’	sentiment	strength	

Phase3.	Calculating	user	satisfaction	

Fig. 1. Process of evaluating user satisfaction

Where W is words in the word map, wi is the ith word in
the word map, T is the number of topics, N is the number
of words, P (wi|zk) is the topic-word distribution calculated
through LDA, P (zk) can be calculate through Eq.(2), P (zk|rj)
is the review-topic distribution calculated through LDA, and
M is the number of reviews.

Computing topic weights. According to the results of
LDA, we can get the review-topic distribution as TABLE
I shown, zk represents the kth topic and rj represents the
jth review. The weight of a topic is the accumulating of
the probability of reviews belong to it, as Eq.(3) shown. For
instance, if we would like to calculate the weight of topic z1,
we just accumulate 0.302, 0.001, 0.320, · · ·, 0.333, · · ·, 0.231.

Weight(zk) =

M∑
j=1

P (zk|rj) (3)

where zk represents the kth topic, P (zk|rj) is a probability
among review-topic distribution calculated using LDA.

TABLE I. DISTRIBUTION FOR REVIEW-TOPIC

z1 z2 z3 · · · zk · · · zK
r1 0.302 0.000 0.004 · 0.033 · 0.209
r2 0.001 0.020 0.204 · 0.153 · 0.007
r3 0.320 0.000 0.004 · 0.013 · 0.331
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
rj 0.333 0..89 0.005 · 0.045 · 0.033
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
rM 0.231 0.070 0.017 · 0.011 · 0.100

C. Analyzing the Sentiment Strength of User Attitudes

In this section, we have two goals: find out attitude as-
pects and pure attitude reviews, and calculate their sentiment
strength. Sentiment Analysis is used in this section to help

us get the sentiment strength of attitudes. But it’s different
from traditional Sentiment Analysis which just analyzes the
sentiment strength of sentence, SatisIndicator needs to analyze
the sentiment strength of each attitude aspect in a particular
sentence.

Extracting attitude aspects. We use a combination of
methods of finding frequent nouns and noun phrases, and using
opinion and target relation mentioned in [7] in this paper. First,
nouns and noun phrases (or groups) were identified by a part-
of-speech (POS) tagger and their occurrence frequencies are
counted simultaneously. We set 5 as the frequency threshold,
which means Nouns and noun phrases (or groups) appearing
more than five times are attitude aspects. Then, we find sen-
tences do not have a frequent aspect, but have some sentiment
words, and extract the nearest noun or noun phrase to each
sentiment word as attitude aspects (We assume that the same
sentiment word can be used to describe or modify different
aspects.).

Analyzing sentiment strength. As we can see in this
software review:“It has many really good functions, but it’s ui
is very very unfriendly.”. It is obvious that the user has positive
sentiment on the attitude aspect “functions” and negative
sentiment on the attitude aspect “ui”. The sentiment strength
of these two attitude aspects are also different, so we need
to calculate sentiment strength of all attitude aspects in this
review. We use an improved recursive neural tensor network
(supervised method), which is proposed by Socher et al [13],
to calculate sentiment strength of attitude aspect. The recursive
neural tensor network was trained by the training set provided
by the author2. The left graph in Fig.2 is Socher’s method,
which embeds every word in a sentence before giving it a
score, and the sentiment strength of the sentence is on the
root node. Our improved method shows in the right graph of
Fig.2. First, we find out all of the subject, predicate, and object
in a sentence. Then, we split them into different parts. Finally,

2http://www.socher.org/index.php/Main/HomePage#Publications

+ +

good functions

+ +

+

many

0

+

has

0

+

It

+ -

very unfriendly

0
is

0
ui

0
the

0

+

,

0
but

+

- 0

+ +

+

good functions

+

+

many

0
has

0 +

+

It -

very

0
is

0
ui

0
the

0

+

,

0
but

+

- 0

[S]

[P]

[O]

[S]

[P]

[O]

very

+ -

--

--

--

--

--

+ -

very unfriendly

+

--

--

--

--

--

Fig. 2. Recursive Neural Tensor Network. The left one is proposed by Socher and the right one is modified by us to meet our demands.

we find the root node of these parts. If a part has an attitude
aspect, the score at root node is its sentiment strength in this
review. For example at the left graph in Fig.2 the curve split
the whole sentence into two phases and the gray circles are
the root node of these two phases. Then we can find attitude
aspect in every phase. The attitude aspect “functions” gets a
positive sentiment strength 4(+) and the attitude aspect “ui”
gets a negative sentiment strength 1(–). Noted that if a review
has no attitude aspect, we just calculate the sentiment strength
of this review (the score at the root node of this review).

D. Calculating User Satisfaction of a Software

We have got the review-topic distribution P (Z|R), the
topic-word distribution P (W |Z) and every topic weight in the
first phase, and the attitudes sentiment strength in the second
phase. In this phase, we will match the attitudes with topics,
and calculate the user satisfaction of a software.

Matching attitudes to topics. For a specific attitude
aspect or pure attitude review, we can find its topic use
Algorithm 1. The inputs of Algorithm 1 are the review-topic
distribution P (Z|R), the topic-word distribution P (W |Z) and
the software reviews j′. The output is the topic the attitude
belongs to. For sth attitude aspect aj′,s in a review rj′ , find
the corresponding review-topic distribution P (Z|rj′) and the
corresponding topic-word distribution P (aj′,s|Z), and then
multiply them. The topic zk which the attitude aspect aj′,s
belongs to can be taken when P (zk|rj′) times P (aj′,s|zk) is
the max probability among others. For a pure attitude review,
we compare the P (Z|rj′′). The topic zk which the review rj′′
belongs to can be taken when P (zk|rj′′) is the max probability
among others.

Calculating user satisfaction. When we analyze the
distribution of software review number, as Fig3 shown, we
found that over 60% software only has one ore two informative
reviews. Think about the situation as follow: we have two
softwares “A” and “B”, “A” has 50 positive reviews, and 50
negative reviews. “B” has 1 positive review and 1 negative

Algorithm 1 Algorithm of matching attitude and topic
Input:

review-topic distribution P(rj |zk), j∈ {1,...,M},
k∈ {1,...,K}
topic-word distribution P(wi|zk), i∈ {1,...,N},
k∈ {1,...,T}
Software Reviews rj′ j′ ∈ {1,...,M′}, M′ <M

Output:
topic ID

1: for every review(rj′) in a software do
2: if rj′ has no attitude aspect then
3: put rj′ in pure attitude reviews;
4: end if
5: for every aspect(aj′,s) in a review rj′ do
6: for every topic(zk) do
7: Probability←P(zk|rj′)*P(aj′,s|zk);
8: topic←zk;
9: topic Probability.put(topic,Probability);

10: end for
11: topicID(aj′,s)← max(Probability(topic

Probability));
12: end for
13: end for
14: for every rj′′ in pure attitude review do
15: topicID(aj′′)← max(Probability(P(zk|rj′′));
16: end for
17: return topicID;

review. All of them have 50% positive reviews and 50%
of negative reviews. However, we can tell the confidence
degree between these two softwares are different intuitively.
We need to balance the proportion of positive ratings with
the uncertainty of a small number of observations. Wilson
Interval can be applied to correct the confidence degree and
give a punish to the software with few reviews. The Eq.(4) is
the Wilson interval proposed by Edwin B. Wilson [14], and
Evan Miller applied it in voting system and got a significant

success [15]. It solves the accuracy problem of small samples
very well. Use p̂ as the number of positive attitude aspects
add that of positive pure attitude reviews, n as the number of
attitude aspects add that of pure attitude reviews, and z is a
constant which indicates the statistic of a certain confidence
level. In this paper we choose 95% as the confidence level. As
we can see with the increasing of n (the number of attitude
aspects add pure attitude reviews), the result will close to the
p̂. We multiply the user satisfaction by the center of Wilson
Interval Eq.(5) to punish the software with few reviews.

WL =
1

1 + 1
nz

2
[p̂+

1

2n
z2 ± z

√
1

n
(1− p̂) + 1

4n2
z2] (4)

WLcenter =
p̂+ 1

2nz
2

1 + 1
nz

2
(5)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

11
0

11
6

12
3

13
1

14
0

14
7

15
7

16
7

18
5

21
8

23
5

26
4

30
1

33
1

50
5

13
51

#s
of
tw
ar
e

#review

Fig. 3. Long tail phonomenan of software review number

We can calculate the user satisfaction of a software as the
Eq.(6) shows.

Satisfaction =

M ′∑
j′=1

S∑
s=1

aj′,sWzs +
M ′′∑
j′′=1

rj′′Wzj′′

M ′ +M ′′
·WLcenter

(6)
Where asj′,s represents the sth attitude aspect sentiment
strength in a review rj′ , zs represents the topic which the
attitude aspect aj′,s belongs to. Wzs represents the weight of
topic zs, M ′ represents the number of reviews which have
attitude aspects, S represents the number of attitude aspects a
review has, M ′′ represents the number of pure attitude reviews
a software has and WL represents the center of Wilson Interval
of this software.

III. EXPERIMENT

In order to evaluation if SatisIndicator has good perfor-
mance in analyzing user satisfaction, we designed several
experiments. We aim to answer the following questions:
1)Which model has better performance, IRNN (Improved
Recursive Neural Tensor Network) or SentiStrength3. 2)What
is the accuracy of SatisIndicator when used in analyzing user
satisfaction. 3)What is the accuracy of SatisIndicator when
used in analyzing user satisfaction of softwares with few
reviews.

3http://sentistrength.wlv.ac.uk/

A. Data Preparation

In this section, we will show how to prepare the data which
is used in the experiment. We wrote a crawler using jsoup4 to
get review data from Sourceforge.net. We have crawled all the
ten software genres’ reviews before Nov. 21, 2015. We only
take ffdshow which is a software project of Audio&Video as
an example to show how to calculate user satisfaction of a
software.

First, we need to know the weight of every attitude topic.
Since ffdshow is in Audio&Video genre, we analyze reviews in
Audio&Video to get attitude topic weight. The Audio&Video
software projects have 11580 software projects and 12480
reviews. Nature language precess(NLP) is used on those 12480
informative data which mentioned in Pre-process data. We
randomly select 20% from this 12480 reviews to do manually
annotate and use 5 people to label the 2496 reviews, if a
review be labeled as informative more than three times, we
annotate this review as informative, otherwise, annotate the
review as non-informative. Classifier in lingpipe5 is used to
classify reviews that have been annotated, we found that Naive
Bayes classifier based on 2gram has the best precision of
89.92%. So we use Naive Bayes classifier based on 2gram
in lingpipe to classify all 12480 reviews. We got 12348
informative reviews totally. After that, we use these reviews
as the input of LDA. We set α = 50

K , β = 0.1, and iterations
t = 1500, use Eq.(1) to calculate the log-likelihood from topic
number k = 2, to k = 90, we don’t choose bigger topic
number because the cure is decreasing and we don’t think the
topic number will bigger than 100 since we only have one
domain. The result shows when T = 25, we got the max
value of Eq.(1). In this case, we set 25 as the number of
topics. When k = 25, we use JGibbLDA6 to calculate review-
topic distribution and topic-word distribution(the parameters
are α = 50

K ,β = 0.1,K = 25,t = 1500). Review-topic
distribution can be used to compute the weight of every attitude
weight.

Then, we need to calculate sentiment strength of each
user attitude in ffdshow’s reviews. We find both frequent and
infrequent nouns and noun phrases like Extracting attitude
aspects as attitude aspect. If a review have no attitude aspect,
it is a pure attitude review. We use improved recursive neural
tensor network to analyze the sentiment strength of every user
attitude.

Finally, for every attitude aspect and pure attitude review
we use Algorithm 1 to find its topic. We accumulate the
ffdshow’s attitude aspects sentiment strength multiply by their
topic weights, and use Wilson Interval to punish the software
with insufficient reviews as Eq.(6) shows.

For softwares in other 9 genres (Business & Enterprise,
Communications, Development, Home & Education, Games,
Graphics, Science & Engineering, Security & Utilities, System
Administration), the user satisfaction can be calculated as the
same.

4http://jsoup.org/
5http://alias-i.com/lingpipe/
6http://sourceforge.net/projects/jgibblda/

TABLE II. PERFORMANCE OF THE SENTISTRENGTH AND IRNN

positive sentiment negative sentiment neutral sentiment
Precision Recall F1 precision Recall F1 Precision Recall F1

SentiStrength 69.26% 78.83% 68.15% 70.32% 84.26% 76.61% 95.72% 43.16% 59.49%
Recursive Deep Model 90.28% 86.43% 84.83% 82.34% 85.47% 83.86% 75.64% 68.78% 72.05%

B. Model Selected for Sentiment Analysis

To our best knowledge, there is another work called sen-
tiStrength also can be used to calculate the sentiment strength.
We can input attitude aspects as keywords to assesses the
sentiment strength of these keywords in the review or put
a pure attitude review to assesses the sentiment strength of
this review. We need to check which method has the better
performance. We annotated 100 reviews manually for every
genre in SourceForge.net.

The IRNN use ++(5), +(4), 0(3), -(2) and –(1) as the
sentiment Strength of a word. The SentiStrength has different
scoring criteria, it measures both the positive and negative
sentiment strength of a sentence. For example, to the sentence
“It has many really good functions, but its ui is very very
unfriendly”, it will give the attitude aspect “functions” a
sentiment strength set [4,−1] which represents the positive
sentiment strength is 4 and negative sentiment strength is -
1, and the attitude aspect “ui” a sentiment strength set [3,−4]
which represents the positive sentiment strength is 3 and nega-
tive sentiment strength is -4. To make SentiStrength and IRNN
can be evaluated in the same metric, we choose the bigger
absolute values as the attitudes’ sentiment strength (such as 4
for the “functions” and -4 for the “ui”). In the SentiStrength
we define that the sentiment strength below 0 is the negative
sentiment, the sentiment strength higher than 0 is the positive
sentiment and the sentiment strength 0 is the neutral sentiment.
In the IRNN we define that the sentiment strength below 3 is
the negative sentiment, the sentiment strength higher than 3
is the positive sentiment and the sentiment strength 3 is the
neutral sentiment.

We defined the precision, recall and F1 as:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2Precision ·Recall
Precision+Recall

(9)

TP means the user attitude should be in positive (negative or
neutral) sentiment type and was correctly assigned to this type,
FP means the attitude aspect should be in positive (negative or
neutral) sentiment type but was assigned to negative or neutral
(positive or neutral, positive or negative) sentiment type, and
FN means that the attitude aspect should be positive (negative
or neutral) sentiment type but be assigned to negative or neutral
(positive or neutral, positive or negative) sentiment type. We
use SentiStrength and IRNN to assess the positive sentiment,
negative sentiment and neutral sentiment.

We run SentiStrength and IRNN on the 100 manually
annotated reviews of each software genre in SourceForge.net.
And the average precision, recall and F1 of the ten software
genre shows in TABLE II. It is obvious that IRNN works better

in all of the sentiment type detection. Both models have high
precision in positive sentiment. After analyzing the reviews,
we found that because there are over 30% reviews simply
write one or two positive sentiment words like “Good”, “Good
job!”, and all these two models is based on supervised method,
moreover “good” is a very common positive sentiment word
in the training set, so both methods have a high precision and
recall on detecting positive emotion. SentiStrength has high
precision and low recall in neutral sentiment detection, because
if it could not detect the sentiment type of the user attitude in a
sentence, SentiStrength would classify it into neutral sentiment
type, and give this user attitude 0 sentiment strength. Since we
mainly concern about the positive and negative sentiment, we
choose IRNN to analyze the attitudes sentiment strength.

C. Evaluating Model Performance

To answer the second question, we should choose the
software with different number of reviews in each software
genre averagely in SourceForge.net. But the number of reviews
which a software are maldistribution. As Fig. 3 shown, there
are over 60% software only has one or two reviews. So we
first classify the software by review numbers, that means the
software with the same review numbers should be in the same
category, then we randomly choose one software in each N
adjacent sub-topics. We totally choose 30 softwares form each
software genre. We ask a volunteer to read all of the software
reviews and give a satisfaction rank of all the 30 softwares
in each software genre respectively. Here we choose to give
them a rank sequence rather than a score, because satisfaction
score is a subjective score which even we give a standard to
the volunteer, it is still hard for him to provide a united score
among softwares. However, the rank is relative, it is easier
for a human to compare the satisfaction among softwares than
give each software a satisfaction score. Since the volunteer
will process so many softwares reviews, we choose the easier
and quicker way which let the volunteer give out a rank
sequence. We use two indicators to evaluate the accuracy
of SatisIndicator, the first is precision@k and the second is
Spearman Coefficient.

Precision@K. We want to know whether SatisIndicator
can get a high average precision at the top 50% rank sequence,
because users usually care more about softwares with high user
satisfaction. So we use p@K as Eq.(10) shown, to evaluate
the average precision of the top 50% software in the rank
sequence, and compared the results with the baselines of start
rating (that means just use the star user given, for example 1
star, 2 star, etc.) without normalizing by Wilson Interval and
star rating with normalizing by Wilson Interval (use Eq.(5)
times the star rating, and p̂ represents the number of reviews
get 4 star or 5 star, n represents the number of reviews.).

p@k =
|A ∩K|
|K|

(10)

A represents the set of the top K softwares in the sequence
we calculated, K represents the set of top K softwares in

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1.2

ΔsrP@3 ΔsrwP@3

0
0.2
0.4
0.6
0.8
1

1.2

ΔsrP@15 ΔsrwP@15

Fig. 4. Results of precision@3 and 15. The horizontal axis represents the software genre, the vertical axis represents the precision, ∆srP@3 represents the
precision of P@3 which SatisIndicator minus star rating baseline, ∆srwP@3 represents the precision of P@3 which SatisIndicator minus star rating with Wilson
Interval, ∆srP@15 represents the precision of P@15 which SatisIndicator minus star rating baseline, ∆srwP@15 represents the precision of P@15 which
SatisIndicator minus star rating with Wilson interval.

0.45

0.55

0.65

0.75

0.85

0.95

SatiIndicator star	rating star	rating	with	WL

Fig. 5. Spearman Coefficient of SatisIndicator, star rating and star rating
with Wilson Interval

the ground truth sequence, |A ∩K| represents the number of
softwares in the set A and set K at the same time and |K|
represents the number of softwares in the set K.

Some of the observations are in the Fig. 4. The black block
means the p@k of SatisIndicator minus the p@k of the star rat-
ing baseline. The white block means the p@k of SatisIndicator
minus the p@k of the star rating with Wilson Interval baseline.
We found that SatisIndicator has good performance obviously
at both p@3 and p@15.

The star rating baseline has a poor precision because it only
has five level(1 star, 2 stars, 3 stars, 4 stars and 5 stars), and
most softwares in the ground truth have five stars. So the star
rating baseline cannot distinguish the difference between them,
which makes the rank sequence random. The star rating with
Wilson Interval baseline also has a poor precision. Because
most reviews are positive, which make the p̂ and n are very
close to each other. And result the center of Wilson Interval is
the same. But SatisIndicator gives a fine grain analysis to each
word in a review and also give a punishment to a software
with few reviews. So, even when the reviews are all have
positive emotion we can still find the difference among them.

The eighth ground truth (the Since&Engineering) has lower
precision than both star rating baselines. We analyzed the data
and find that there is only 3 software have 5 stars in the eight
ground truth, so all this three softwares locate in the top 3
positions and make the precision of p@3 is 100%, but which
is the first, which one is the second and which one is the
third is random. But the sequence position among these three
softwares is random. Although SatisIndicator only found 2 out
of top 3 softwares, the two software’s position is the same as
the ground truth.

Spearman coefficient. To avoid the problem in the
Since&Engineering data set in Fig. 4, which the sequence
has high p@3 but low relevance to the ground truth, we use
spearman coefficient, as Eq.(11) shown. It can evaluate the
relevance among sequences.

ρ = 1−
6

N∑
i=1

(s1,i − s2,i)2

N(N2 − 1)
(11)

the s1,i represents the ith position in sequence 1, the s2,i repre-
sents the ith position in sequence 2. N represents the number
of position both sequences have. The Spearman Coefficient is
between -1 to 1. If the Spearman Coefficient close to 1, that
means the two sequences are very similar. If the Spearman
Coefficient close to 0, that means the two sequences are very
different. And if the Spearman Coefficient close to -1, that
means the two sequences are negative correlation.

Some of the observations are showed in the Fig. 5. It is
obvious that SatiIndictor has very high Spearman Coefficient
over 80% on all of the ten data sets. That means the sequence
calculated by SatisIndicator is more relevance to the ground
truth.

D. Evaluating Model Performance when Reviews are Insuffi-
cient

When analysis the user reviews in SourceForge, we found
that over 95% softwares with one or two reviews have five
stars. In such situation, star rating can only give a random se-
quence. Furthermore, we also found that about 67% softwares

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ΔsrP@3 ΔsrwP@3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ΔsrP@15 ΔsrwP@15

Fig. 6. Results of precision@3 and 15 when reviews are insufficient. the horizontal axis represents the software genre, the vertical axis represents the precision,
∆srP@3 represents the precision of P@3 which SatisIndicator minus star rating baseline, ∆srwP@3 represents the precision of P@3 which SatisIndicator minus
star rating with Wilson Interval, ∆srP@15 represents the precision of P@15 which SatisIndicator minus star rating baseline, ∆srwP@15 represents the precision
of P@15 which SatisIndicator minus star rating with Wilson Interval.

have one or two reviews in SourceForge. It is meaningful to
know if SatisIndicator performance well when the softwares
have few reviews. We choose a sample of 30 softwares with
least reviews in every software genre. It is very hard even
for human to give the sequence only according to one or
two reviews. So we ask the volunteer to choose softwares
which have the least reviews but can give a sequence use their
reviews. The software we choose has 1 to 7 reviews in all
software genres.

Precision@K. We found that StatiIndicator obviously
has good performance at p@3 and p@15 over the other two
baselines when softwares have few reviews. The star rating
has a very bad performance at p@3 and p@15. Because most
software only has one review, and we find that almost every
software which has one review has five stars. Almost all
softwares in the ground truth have the same star rating, and the
sequence calculated using star rating makes no sense. The star
rating with Wilson Interval also performances bad. Because as
Eq.(5) shown, when all softwares with one positive review
will have the same center of Wilson Interval (the positive
reviews p̂ equals the number of reviews n). When evaluate
the software with one positive review, the result will as same
as the star rating without Wilson Interval. SatisIndicator has
better performance because we have analyzed every attitude
aspects in a review sentence. Although the software has only
one review, it still has different attitude aspects. These attitude
aspects may in different topics, that means attitude aspects will
have different weight. Different from star rating with Wilson
Interval the p̂ in Wilson Interval of SatisIndicator represents
the positive attitude aspects numbers, so the center of Wilson
Interval will be different. With such fine grained, the result of
SatisIndicator will more similar to the ground truth. However,
if the software only with one review like “Good!”, “Great
job!”, SatisIndicator will almost have the same result as the
two baselines. But in this situation even human can not tell
which software has a higher user satisfaction from reviews.

Spearman Coefficient. Some of the observations are
shown in the Fig. 7. It is obvious that SatisIndicator has a very
high Spearman Coefficient over 60% on all of the ten data sets
when softwares with few reviews. That means the sequence

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

SatiIndicator star	rating star	rating	with	WL

Fig. 7. Spearman Coefficient of SatisIndicator, star rating, and star rating
with Wilson Interval.

calculated by SatisIndicator is more relevance to the ground
truth, even when all of the software has few reviews. The other
two baselines have almost random sequence. Because they only
give a coarse grained score to a software review, not a fine
grained score to every attitude. And when all of the softwares
with few reviews have 5 stars, the sequence is random. When
all of softwares have few reviews and all of them are positive
reviews with 5 star, the both two baselines can not tell which
software has high user satisfaction and which software has low
user satisfaction.

IV. RELATED WORK

Our work is related to sentiment analysis, and user reviews
mining.

A. Sentiment Analysis

Sentiment analysis, also known as opinion mining, is the
extraction of positive, negative or neutral sentiment from
text[5]. Academic community has done many work on this
topic, also have made great contributions, but we can’t use
those outcomes directly.

Pang et al.[6] use supervised learning and classify reviews
by overall sentiment. We can not use their work since they just
classify reviews into three topic: positive, negative, and neutral,
and they just calculate the review’s sentiment not every attitude
aspect’s.

Hu et al.[7] use frequent features and infrequent features
as product features commented by customers, then they identi-
fying opinion sentences in each review, and deciding whether
each opinion sentence is positive or negative, finally they can
get the result that for a feature, there are how many sentences
express positive emotion and how many sentences express
negative emotion.

Our work is different from their because we want to get
the features’/aspects’ sentiment strength rather than how many
positive or negative reviews these features/aspects have. So,
we can’t use those work to do a fine grained quantitative
calculation on sentiment strength of user reviews.

Popescu et al.[8] decompose the problem of review min-
ing into the sub-tasks of identify product features, identify
opinions regarding product features, determine the polarity
of opinions, and rank opinions based on their strength(for
example, “horrible” is a stronger indictment than “bad”). But
Still can’t quantitatively evaluate the sentiment strength of the
features.

Mike et al.[9], extracted sentiment strength from informal
English text, using new methods to exploit the defacto gram-
mars and spelling styles of cyberspace. Applied to MySpace
comments and with a lookup table of term sentiment strengths
optimized by machine learning and make a tool called Sen-
tiStrength. SentiStrength can evaluate sentiment strength at
a level of positive 1 to 5 and negative -1 to -5. and 0
represents neutral. We can’t directly use their work to evaluate
the Satisfaction, because they extract attitude aspects without
categorising them, and we need to find not only the features’
sentiment strength but also the weight of every feature.

B. Mining User Reviews

There are several studies on user reviews mining recent
years, but most of them are helping developers to quickly read
the user reviews, or help developers to quickly understand the
user experiments from the user reviews.

Galvis et al. [16] do requirements analysis based on user
reviews. They clustering user reviews by topic model, then get
requirements report for developers by quality indicators which
generated by clustering the user reviews by topic model. This
will help developers save a lot of time to read user reviews,
but it helps nothing for the software quality evaluation. We not
only need know what user talk about or care about, but also
the user attitudes toward them. That means we should analysis
the sentiment even the sentiment strength of the reviews. their
work is not enough for our demands.

Chen et al. [17] propose an approach to rank user reviews
by importance for developer, to help developers find out
informative reviews. They just cluster user reviews and tell
the developer which topic is important. We can not use their
approach since it either analyze the sentiment of the user
reviews or can deal with software with insufficient reviews.

Syn et al. [18] propose an approach to category user
reviews according to the three characteristics in quality-in-use
model defined in ISO: effectiveness, efficiency and freedom
from risk. We can’t use their approach because we evaluate
another characteristics of quality-in-use model: satisfaction.

Leopairote et al. [19] propose an approach for software
product reviews mining based on software quality ontology
constructed from ISO 9126 and a rule-based classification to
finally produce software quality in use scores for software
product representation. We can’t use their approach since they
have only calculated the review numbers of positive, negative,
and neutral, and do not calculated the strength of the sentiment.

Maalej et al. [20] classify user reviews into four topics:
bug report, feature request, user experiences, and rating. We
can’t use this method because we don’t know how many topics
that user reviews contain, that means we should use cluster not
classify to find how many topics user reviews contain.

What Guzman et al. [21] did is similar with us, their
work aim to help developers filter, aggregate, and analysis user
reviews by topic model. But they use topic model on single
software, since topic model is only suit to deal with large
number of reviews, that means 99% percent of software project
on SourceForge.net can’t be used their approach. Furthermore
their work just analyze the sentiment strength of a review, not
every attitude aspects.

V. CONCLUSION

In this paper, we proposed a novel approach called
SatisIndicator to automatically evaluate the user satisfaction
from user reviews which implicate user attitudes. User reviews
contain many user attitudes to softwares, which can be using
to evaluate the user satisfaction. First We use topic model
to cluster reviews, and weight each topic. Then we extract
user attitudes, and use an improved recursive neural tensor
network to analyze attitudes sentiment strength. Finally we
get the software user satisfaction through multiplying attitudes
sentiment strength by their corresponding topic weight. Wilson
interval is used to punish softwares with few reviews. We want
to use quality-in-use model to assess the quality of software
projects automatically in the future. However, user satisfaction
is one of characteristic in quality-in-use model, there are also
other important characteristics like effectiveness, efficiency,
freedom from risk, and context coverage. All characteristics
need to be assessed using both subjective and objective data.
We also want to map the quality-in-use model with software
project life cycle to assess software project quality in different
life cycle stages in the future.

ACKNOWLEDGMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) , National Natural Science Foundation of
China (Grant No. 61472242), and Key Lab of Information
Network Security, Ministry of Public Security (Grant No.
C14609).

REFERENCES

[1] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, K.-i. Mat-
sumoto, B. Ghotra, Y. Kamei, B. Adams, R. Morales, F. Khomh, et al.,
“The impact of mislabelling on the performance and interpretation of
defect prediction models,” in Proc. of the 37th Int’l Conf. on Software
Engineering (ICSE).

[2] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect prediction
models,” in Proc. of the 37th Intl Conf. on Software Engineering (ICSE),
2015.

[3] X.-Y. Jing, Z.-W. Zhang, S. Ying, F. Wang, and Y.-P. Zhu, “Software
defect prediction based on collaborative representation classification,”
in Companion Proceedings of the 36th International Conference on
Software Engineering, pp. 632–633, ACM, 2014.

[4] “Iso/iec 25010:2011: Systems and software engineering systems and
software quality requirements and evaluation (square) system and
software quality models (2011),”

[5] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foun-
dations and trends in information retrieval, vol. 2, no. 1-2, pp. 1–135,
2008.

[6] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classi-
fication using machine learning techniques,” in Proceedings of the ACL-
02 conference on Empirical methods in natural language processing-
Volume 10, pp. 79–86, Association for Computational Linguistics, 2002.

[7] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 168–177, ACM, 2004.

[8] A.-M. Popescu and O. Etzioni, “Extracting product features and opin-
ions from reviews,” in Natural language processing and text mining,
pp. 9–28, Springer, 2007.

[9] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas,
“Sentiment strength detection in short informal text,” Journal of the
American Society for Information Science and Technology, vol. 61,
no. 12, pp. 2544–2558, 2010.

[10] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings
of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 50–57, ACM, 1999.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[12] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National Academy of Sciences, vol. 101, no. suppl 1, pp. 5228–
5235, 2004.

[13] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the conference on
empirical methods in natural language processing (EMNLP), vol. 1631,
p. 1642, Citeseer, 2013.

[14] E. B. Wilson, “Probable inference, the law of succession, and statistical
inference,” Journal of the American Statistical Association, vol. 22,
no. 158, pp. 209–212, 1927.

[15] E. Miller, “How not to sort by average rating,” URL: http://www.
evajimiller. org/how-not-to-sort-by-average-rating. html, 2009.

[16] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments: an
approach for software requirements evolution,” in Proceedings of the
2013 International Conference on Software Engineering, pp. 582–591,
IEEE Press, 2013.

[17] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software Engi-
neering, pp. 767–778, ACM, 2014.

[18] W. T. W. Syn, B. C. How, and I. Atoum, “Using latent semantic analysis
to identify quality in use (qu) indicators from user reviews,” arXiv
preprint arXiv:1503.07294, 2015.

[19] W. Leopairote, A. Surarerks, and N. Prompoon, “Software quality in use
characteristic mining from customer reviews,” in Digital Information
and Communication Technology and it’s Applications (DICTAP), 2012
Second International Conference on, pp. 434–439, IEEE, 2012.

[20] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
on automatically classifying app reviews,” in Requirements Engineering
Conference (RE), 2015 IEEE 23rd International, pp. 116–125, IEEE,
2015.

[21] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in Requirements Engineer-
ing Conference (RE), 2014 IEEE 22nd International, pp. 153–162,
IEEE, 2014.

