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Abstract—Requirements traceability provides support for
critical software engineering activities such as change impact
analysis and requirements validation. Unfortunately many
organizations have ineffective traceability practices in place,
largely because of poor communication and time pressure
problems. Therefore researchers have proposed various
approaches to automatically recover requirement-to-code links.
Typically, these approaches are based on Information Retrieval
techniques, and use various features such as synonyms,
verb-object phrases, and structural information. Although many
links are thus recovered, the effectiveness of individual features
is not fully evaluated, and it is rather difficult to combine
different features to produce better results. In this paper, we
implement a tool, called R2C, that combines various features to
recover requirement-to-code links. With the support of R2C, we
conduct an empirical study to understand the effectiveness of
these features in recovering requirement-to-code links. Our
results show that verb-object phrase is the most effective
feature in recovering such links. A preliminary case study
indicates that our tuning combines different features to produce
better results than IR-based technique using a single feature.
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I. INTRODUCTION

Software traceability is recognized as an important quality
of a well-engineered software system [1]. The traceability
information, including links between requirements and code,
is critical in the management of software development [?], so
many companies carefully define such traceability
information before development. In practice, some companies
may not define the traceability carefully, and even if such
traceability initially is defined, it soon becomes obsolete,
since both requirements and implementations are changing
due to various factors [2]. As a result, programmers often
have to maintain the links between requirements and code
manually, which is time-consuming and error prone [3].

To reduce the heavy manual effort for maintaining such
links, automatically recovering traceability has long been a
hot research topic in the software engineering
community [4]. Researchers have proposed many approaches,
and most of them are based on information retrieval (referred
to as IR-based approaches in this paper). Typically, IR-based
approaches extract terms to represent requirements and code,
and compare extracted terms to build the links between
requirements and code. Although IR-based approaches
successfully recover many links, their precisions and recalls
are often below expectation.

We manually inspected many requirements and their
corresponding code snippets and find that the following three

features are widely used. First, although requirements and
code use different terms, these terms are often synonyms.
Second, requirements often contain many irrelevant words,
whereas verb-object phrases convey the essential meanings.
Third, code that linked to the same requirement always have
relationships, such as function calls, inheritance or realization
relationships). About the effectiveness of these different
features, many research questions in this research direction
are still open. For example, which is the most effective
feature to recover the links? How to integrate different
features for the best results?

In this paper, we conduct an empirical study to address
the above research questions. This paper makes the following
major contributions:

• We implement a tool, called R2C, that recovers links
between requirements and code. With the support of
R2C, we conduct an evaluation on four real projects.
Our results show that R2C is advanced, since it
achieves even better results than a state-of-the-art
tool.

• Empirically, we show that verb-object phrases are
the most important feature to recover the links
between requirements and code, and combining
various features can lead to better results than
individual features.

The rest of this paper is structured as follows. Section II
introduces semantic features in existing literatures.
Section III presents our empirical study. Section IV
introduces related work. Section V concludes.

II. FEATURES

In this section, we present the three key features in
literatures. Different approaches implement similarity
formulae with subtle differences. It is infeasible to implement
all the formulae, but we implement reasonable formulae in
R2C.

A. The Three Key Features

We find that most approaches use the following features:

• Synonyms. IR-based approaches extract terms from
requirements and code. Although these terms are not
identical, they are often synonyms, when a
requirement and a piece of piece are linked correctly.

• Verb-object phrases. In requirements, most
sentences have verb-object phrases, which convey
the essential meanings of sentences. We can catch
the main information of the requirements with the



support of natural language processing (NLP)
techniques.

• Structural Information. There are lots of structural
information potentially contained in source code. In
traceability links, source code related to the same
requirement always have relationships.

B. Synonym

Although synonyms are important, it is nontrivial to
determine synonyms of terms. Some recent approaches [5],
[6] define their own glossary and ontology, and their
limitation lies in the huge manual effort to build such
glossary or ontology. To reduce the human effort, R2C uses
WordNet [7] to locate synonyms of a given term. In
WordNet, each term can have several senses, and each sense
is stored as a semantic tree. The leaves of a semantic tree are
words with similar meanings. There are many researches in
calculating the similarity between two senses of terms, a
common method is based on the synset, classword and sense
explanation in WordNet [8]. Given two terms (S1 and S2),
their approach [8] calculates their similarity as sim(S1, S2).
However, a term may have different senses, and it is difficult
to determine its sense in a context. We find that in many
pairs of terms, their correct senses have the maximum values
of sim(S1, S2). As a result, we define the similarity between
two terms as follows:

WSim(W1,W2) = max
{
sim(Si, Sj)

}
(1)

where Si represents a sense of word W1, and Sj represents a
sense of word W2.

C. Verb-object Phrases

In traditional IR techniques, a document is regarded as a
bag of unordered words. Typically, these techniques focus on
only nouns, since they are designed to understand the key idea
of a document. In such cases, nouns are often more important
than the other words.

However, the assumption does not fit the context of
recovering links between requirements and code. In software
projects, nouns are often limited, so many nouns in arbitrary
requirements and code snippets are identical. As a result, it
leads to many errors, when traditional approaches try to
recover links based on only nouns.

We find that in many incorrect requirement-to-code links,
although their nouns are identical, their verbs are different,
since they describe actions. For example, we investigated the
requirements and code of a hospital information management
system, and we find that both documents and code contain
some nouns (e.g., drug) many times. These words are often
not helpful in recovering the requirement-to-code links. In
the contrast, from the perspective of actions, requirements
and code are distinct, since they are related to different
actions (e.g., buying drugs). As a result, it may achieve better
results, if we extract verb-object phrases from requirements
and code comments.

R2C uses Stanford Parser [9] to analyze syntactic
structure of sentences. Based on the built syntax trees and
Part-of-speech tags, R2C extracts the verb-object phrases

from both requirements and code comments. Extracted verbs
and nouns may be in morphological forms. R2C reduces
these words to its root word with the stemmer of Stanford
Parser. For example, it reduces book and books to the root
word, book.

As code comments are different from code elements, R2C
treats them in different ways:

Requirements & Code comments. Both requirements and
code comments are in natural language, R2C extracts terms
from them with the same following steps:

• Part-of-speech (POS) tagging. R2C first builds POS
tags for each sentence of a given code comments.
These POS tags include verbs, nouns, adjectives,
adverbs, and others.

• Parsing. R2C analyzes syntactic structure of sentences
and the dependency between terms.

• Extracting verb-object phrases. R2C extracts a
verb-object phrase from each simple sentence or
each clause of a complicated sentence. Extracted
verb-object phrases are in the form of 〈verb, noun〉.

• Stemming verb-object of phrases. R2C reduces verbs
and objects to their root words.

Code elements. Code elements are in programming languages.
R2C extract verb-object phrases from code elements with the
following steps.

• Extracting identifiers. R2C extracts identifiers such as
class names, method names and variable names from
a given piece of code.

• Extracting words. R2C splits names of identifiers into
sets of words. For example, getUserInfo is split into
{get, user, info}, and system.initialize is split into
{initialize, system}.

• Recovering acronyms. R2C extends minimum edit
distance algorithm [10] to compare the distances
from words in code comments and an acronym, and
resolves the acronym as the word with minimum
distance. For example, info is resolved as
information.

• Extracting and stemming verb-object phrases. R2C
combines words into simple sentences. After that, it
extracts and stems verb-object phrases as it extracts
such phrases from code comments.

We find that verb-object phrases between requirements
and code may not be identical. For two given verb-object
phrases (〈V1, N1〉 and 〈V2, N2〉), R2C defines their similarity
as follows:

PSim(P1, P2) =α×WSim(V1, V2)

+ (1− α)×WSim(N1, N2)
(2)

where WSim(Wi,Wi) is defined in Equation 1; α and (1−α)
are the weights of verbs and nouns, respectively.



D. Computing Text Similarity

Following other state-of-the-art tools, R2C treats
requirements and code as texts and compare their similarities
based on IR techniques.

To compute the similarity between requirements and code,
R2C adopts Vector Space Model (VSM), a widely used model
in IR. In VSM, a document is represented as an n dimension
vector < w1, w2, · · · , wn >, where n represents the number of
distinct terms such as words or phrases, and wi(1 ≤ wi ≤ n)
represents the weight of a unique term. R2C calculates the
weight for each term based on Frequency-Inverse Document
Frequency (TF-IDF) metric. In TF-IDF, the weight wi of a
term in a document increases with its occurrence frequency in
this document and decreases with its occurrence frequency in
all documents. It is defined as follows:

wi = tfi × log
|D|

|{j : ti ∈ dj}|
(3)

where tfi represents the occurrence frequency of term ti in a
document, |D| represents the number of documents, and |{j :
ti ∈ dj}| represents the number of documents that contain the
term ti. It is noteworthy that we calculate TF-IDF values of
terms for requirements and code separately.

The TF-IDF metric is designed for terms in natural
language documents. Code is in programming languages,
which are quite different from natural languages. First, class
names play more important roles in expressing the
functionality of code than variable names. Second, methods
with more lines of code are more important than those
methods with only several lines of code. Based on the above
findings, we use the parameter η to tune the weights wi of
terms as follows:

η = γ × log(LOC) (4)

where γ represents the importance of these terms, and LOC
represents lines of code. If terms are not extracted from code,
we set η as 1. In addition, as discussed before, terms may
not be identical but synonyms. Considering this, we tune the
weight wi as follows:

wi =
∑

{j:(Pi,Pj)∈S}

(
η × tfi × idfi × PSim(Pi, Pj)

)
(5)

where {j : (Pi, Pj) ∈ S} represents iterating all synonymous
terms Pj of a term Pi.

After R2C builds VSM based on TF-IDF, it defines the
similarity between requirements and code as the cosine of the
angle between the corresponding vectors.

Sim(r, c) =
~Vr × ~Vc

|| ~Vr|| × || ~Vc||
(6)

where ~Vr and ~Vc are the vectors that denote requirements and
code, and ||~V || represents the Euclidean norm of vector V .

E. Structural Information

Consider an example in a small book management
system. There is a requirement AuthorizeUser and a source
code class User.java. With IR-based approach mentioned
before, it is easy to recover a link between them. However,
there are some other correct links missed. The requirement

Input: G(C,E), s, Links and Sim(s, c)
Output: Sim(s, c)

1 for all (si, cj) ∈ Links do
2 for ck ∈ C do
3 if (cj , ck) ∈ E then
4 Sim(si, ck) = Sim(si, ck)+δ×Sim(si, cj);
5 end
6 end
7 end
8 return Sim(s, c);
Algorithm 1: Updating with structural information

of initial links recovered before. Sim(s, c) is the similarity
calculated with Equation 7. If a requirement document is
linked to a code, it is probably linked to some other related
code, so we increase their similarity value by adding a bonus
δ × Sim(si, cj).

There is no doubt that the bonus should be related to origin
similarity value Sim(si, cj). However, δ is quiet difficult to
define. Considering the size can sensibly differ from one
system to another, we set a adaptive δ as follows [16]:

δ = medium

(

maxi −mini

2

)

(8)

where maxi and mini are the maximum and minimum sim-
ilarity values between all requirement documents and source
code, and medium denotes the variability.

Overall, R2C using synonyms, verb-object phrases and
structural information features to combine textural and struc-
tural analysis of software traceability between requirement and
code.

III. LEARNING THE BEST CONFIGURATION

R2C allows tuning its parameters automatically. It needs
as set of marked links as the golden standard. Based on
the golden standard, it analyzes features of marked links to
determine the value of parameters (Sectoin III-A), and it
further uses trained parameters to recover previously unknown
links (Section III-B).

A. Tuning Parameters

Determining the parameters is nontrivial [17]. With a lower
threshold value, we may get more valid results with more false
ones. In the contrast, a higher threshold value may reduce
false positives, and reduces true positives at the same time.
To determine the best parameters, we learn from the known
links (Lk) that are identified by experts, including valid links
(Lv) and irrelevant links (Li).

Synonyms Similarity (SS) determines the threshold of syn-
onyms similarity.

R2C divides words into several synonymous groups based
on a threshold. If the synonyms similarity between two words
is more than the threshold, R2C considers them as synony-
mous. This threshold is specific to projects, since different
projects may use quite different terms. It is tricky to tune
the threshold. To reduce the effort, we propose an algorithm

Input: Sw, gsg, and θ
Output: θc

1 θc = null;
2 F -measuremax = null;
3 g = null;
4 for θ = θ0; θ ≤ θmax; θ = θ +∆θ do
5 g = Cluster(Sw, θ);
6 Calculate F -measure(GSG, g);
7 if F -measure(gsg, g) ≥ F -measuremax then
8 F -measuremax = F -measure(gsg, g);
9 θc = θ;

10 end
11 end
12 return θc;

Algorithm 2: Tuning synonym threshold

that tunes the threshold based on training data. In particular,
we identified all words from Lv , and we use Sw to denote
the words. After that, we manually divide Sw into different
synonym groups as golden set groups (gsg). When R2C tries
different thresholds, and selects the best value through a
search-based algorithm.

Algorithm. 2 shows our algorithm. It exhaustively searches
for threshold that achieves the maximum F-measure.

The inputs of Algorithm 2 are identified words Sw, golden
set groups gsg and an initial threshold θ. In Line 4, θ0 is
the minimum threshold; θmax is the maximum threshold, and
∆θ is a small delta. The output is the best threshold θc,
when the maximum F-measure is achieved. Our algorithm
iterates the threshold θ (line 4). Based on each threshold, our
algorithm divides words Sw into synonym groups g (line 5),
and compares gsg and g to calculate F -measure (line 6). If a
threshold θ achieves a better F -measure (line 7), it updates θc
and F -measuremax (line 8-9). After iterating all thresholds,
it obtains the best threshold θc (line 10).

Link Similarity (LS) determines the two parameters such as
α in Equation 2 and γ in Equation 5.

Like the threshold of synonym similarity, the two param-
eters are also specific to projects. Algorithm 3 leans the two
parameters from training data. Its inputs are known links Lk,
an initial synonym threshold θ, an initial α, and an initial
γ, and its outputs are the trained threshold and parameters,
i.e., θc, αc and γc. In particular, it iterates θ, α and γ (line
4-6). For each link in Lk (line 7), it further uses current α
and γ to calculate their similarity (line 8) and labels them as
valid or irrelevant (line 9-14). After that, it compares Lk and
l to calculate F -measure (line 16). If a better F -measure is
achieved (line 17), it updates θc, αc, γc and F -measuremax

(line 18-19). After checking all thresholds and parameters, it
obtains the best threshold and parameters (line 24).

B. Recovering the Missing Links

In a large and evolving project, there are a lot of require-
ments and code, and their links can be many. These links fall
into the following categories:

• One-to-one links. A piece of code implements a re-
quirement.

• Recovering acronyms. Typically, programmers use
acronyms instead of complete words to name i-
dentifiers. R2C compares those acronyms with code
comments to resolve them full words. In particular,
it extends minimum edit distance algorithm [14] to
compare the distances from words in code comments
and an acronym, and resolves the acronym as the
word with minimum distance. For example, in a
method, info is resolved as information, and msg
is resolved as message, since corresponding code
comments contain the two words.

• Extracting and stemming verb-object phrases. R2C
combines words into simple sentences. After that, it
extracts and stems verb-object phrases as it extracts
such phrases from code comments.

We find that verb-object phrases between requirements and
code comments may not be identical. For two given verb-object
phrases (⟨V1, N1⟩ and ⟨V2, N2⟩), R2C defines their similarity
as follows:

PSim(P1, P2) =α × WSim(V1, V2)

+ (1 − α) × WSim(N1, N2)
(2)

where WSim(Wi,Wi) is defined in Equation 1; α and (1−α)
are the weights of verbs and nouns, respectively.

Only several approaches (e.g., [15]) extracts phrases for
recovering requirement-to-code links, and its effectiveness is
not fully investigated yet.

D. Computing Text Similarity

Following other state-of-the-art tools, R2C treats require-
ments and code as texts and compare their similarities based
on IR techniques.

To compute the similarity between requirements and code,
R2C adopts Vector Space Model (VSM), a widely used model
in IR. In VSM, a document is represented as an n dimension
vector < w1, w2, · · · , wn >, where n represents the number of
distinct terms such as words or phrases, and wi(1 ≤ wi ≤ n)
represents the weight of a unique term. R2C calculates the
weight for each term based on Frequency-Inverse Document
Frequency (TF-IDF) metric. In TF-IDF, the weight wi of a
term in a document increases with its occurrence frequency in
this document and decreases with its occurrence frequency in
all documents. It is defined as follows:

wi = tfi × idfi (3)

where tfi represents the occurrence frequency of term ti in a
document, and idfi represents the inverse occurrence frequency
of term ti, which is defined as:

idfi = log
|D|

|{j : ti ∈ dj}| (4)

where |D| represents the number of documents, and |{j : ti ∈
dj}| represents the number of documents that contain the term
ti. It is noteworthy that we calculate TF-IDF values of terms
for requirements and code separately.

The TF-IDF metric is designed for terms in natural lan-
guage documents. Code is in programming languages, which
are quite different from natural languages. First, class names
and method names occurs infrequently in code, but they play
more important roles in expressing the functionality of code
than variable names, although such variable names occur
frequently in code. Second, some method names convey more
meanings than others. In many cases, methods with more lines
of code are more important than those methods with only
several lines of code. Based on the above findings, we use
the parameter η to tune the weights wi of terms as follows:

η = γ × log(LOC) (5)

where γ represents the importance of these terms, and LOC
represents lines of code. If terms are not extracted from code,
we set η as 1. In addition, as discussed before, terms may
not be identical but synonyms. Considering this, we tune the
weight wi as follows:

wi =
∑

{j:(Pi,Pj)∈S}

(
η × tfi × idfi × PSim(Pi, Pj)

)
(6)

where {j : (Pi, Pj) ∈ S} represents iterating all synonymous
terms Pj of a term Pi.

After R2C builds VSM based on TF-IDF, it defines the
similarity between requirements and code as the cosine of the
angle between the corresponding vectors:

Similarity =
V⃗r × V⃗c

||V⃗r|| × ||V⃗c||
(7)

where V⃗r and V⃗c are the vectors that denote requirements and
code, and ||V⃗ || represents the Euclidean norm of vector V .

R2C have been implemented a basic IR-based approach
that recovers requirement-to-code links. Most approaches in
this research line are IR-based. Borg et al. [6] present a
comprehensive review on research in this line.

E. Structural Information

Consider an example in a small book management system.
There is a requirement AuthorizeUser and a source code
class User.java. With IR-based approach mentioned before,
it is easy to recover a link between them. However, there
are some other correct links missed. The requirement also
relevant to Reader.java which extends User.java. Injecting
structural information, R2C could recovered this missed link

also relevant to Reader.java which extends User.java.
Injecting structural information, R2C is able to recover this
missed link because of the inheritance relationship between
User.java and Reader.java. After recovering a set of
initial links, R2C next uses structural information to update
similarity values between requirements and code.

In Algorithm 1, G(C,E) is the indirect graph of
relationships between source code, in which
C = {c1, c2, · · · , cn} means the set of code and
E = {(ci, cj)} means the set of relationships. The
relationships include call relations and inheritance relations.
Moreover, let S be the set of requirement documents and
Links be the set of initial links recovered in the previous
step. Sim(s, c) is the similarity calculated with Equation 6.
If a requirement is linked to a code, it is probably linked to
some other related code, so we increase their similarity value
by adding an extra δ × Sim(si, cj). Although adding the
extra values improves the similarity calculation, it is difficult
to determine δ. Considering the size can sensibly differ from
one system to another, we set a adaptive δ as follows [11]:

δ = medium {(maxi −mini)/2} (7)

where maxi and mini are the maximum and minimum
similarity values between all requirement documents and
source code, and medium denotes the variability.

III. EMPIRICAL STUDY

In this study, we focus on two following research questions:

• To what degree does our approach combine various
features to produce better results (Section III-B)?

• Which is the most effective feature to recover
requirement-to-code links (Section III-C)?

To answer the first research question, we compare R2C
with an IR-based tool (baseline) [12] and two improved tool
phrasing [13] and O-CSTI [11]. The results show that R2C is
an advanced tool, which increases the reliability of the
results in the follow-up research question. To answer the
second research question, we combine different features. Our
results show that verb-object phrases are the most effective
feature to recover requirement-to-code links.

A. Setup

Table I shows the subject projects in our study. The
requirements and code comments of all these projects are in
English, but some nouns in eTour and EasyClinic are in
Italian. In eTour, iBooks and SMS, most classes, methods
have code comments and some important code lines have



TABLE I. PROJECTS FOR CASE STUDY

Project Requirements Code Links(Golden Set)

eTour 58 116 366

iBooks 19 61 104

SMS 64 102 1071

EasyClinic 30 47 93

code comments as well. In EasyClinic, only classes have
code comments.

In our study, we need the ground truth of links between
requirements and code. SMS provides the links between its
requirements and code, so we use these links as the golden
standard. The other three projects do not provide such links,
so we build them by experts. Comparing the manual results
with our results, we calculate the recalls, precisions and F-
measures of R2C.

B. Metrics

A recovered link falls into one of the four categories, i.e., a
link that is identified as a true link (TP), a link that is identified
as a false link (FP), a true link that is missed (TN), and a false
link that is missed (FN). Based on these categories, we define
recall, precision and F-measure as follows:

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

F -measure =
2×Recall × Precision
Recall + Precision

(10)

C. Overall Results

Table II shows the overall result. In the eTour project, the
golden standard has 366 links between 58 requirements and
116 methods. The baseline approach recovered 186 (50.82%)
valid links from 402 (46.27%) identified links. Phrasing and
O-CSTI are better, respectively recovered 176 (48.09%) from
349 (50.43%) and 188 (51.37%) from 371 (50.67%). The
R2C performed the best, recovered 197 (53.83%) valid links
from 312 (63.14%) identified links. As F-measures are
concerned, R2C outperforms the baseline approach from
0.4844 to 0.6170. In the iBooks project, the golden standard
has 104 links between 19 requirements and 61 methods. R2C
recovered 71 (68.27%) of them, with the precision 77.17%.
Compared with the baseline approach, Phrasing and O-CSTI,
both recall and precision in R2C are significantly higher,
which leads to a better F-measure. The SMS project is
largest project in our study, with 1071 links between 64
requirements and 102 methods. R2C recovered 638 (59.57%)
valid links, while the baseline approach, Phrasing and
O-CSTI respectively recovered 597 (55.74%), 602 (56.21%)
and 591 (55.18%) valid links. In total, the other three
approaches recovered 1462, 1317 and 1380 links, whereas
R2C identified only 1049 links. R2C improves the precision
as well, leading to a better F-measure with 0.5925. In the
EasyClinic project, the golden standard has 93 links between

TABLE II. OVERALL RESULT

Project Links Approach Recall Precision F-measure

eTour 366

Baseline 0.5082 0.4627 0.4844

Phrasing 0.4809 0.5043 0.4923

O-CSTI 0.5137 0.5067 0.5102

R2C 0.5546 0.6952 0.6170

iBooks 104

Baseline 0.4712 0.4495 0.4601

Phrasing 0.4519 0.6184 0.5222

O-CSTI 0.4231 0.5366 0.4731

R2C 0.6827 0.7717 0.7245

SMS 1071

Baseline 0.5574 0.4083 0.4714

Phrasing 0.5621 0.4571 0.5042

O-CSTI 0.5518 0.4283 0.4823

R2C 0.5957 0.6261 0.6105

EasyClinic 93

Baseline 0.4409 0.4227 0.4316

Phrasing 0.4516 0.4242 0.4375

O-CSTI 0.4624 0.4216 0.4410

R2C 0.4946 0.4946 0.4946

30 requirements and 47 methods. In both Recall and
Precision, R2C is marginally higher (less than 7%) than the
other three approaches. Table II shows the overall result
when F-measure achieve the maximum.

As industrial applications of automated traceability are
only considered successful when they achieve high recall
levels [14], we also evaluate the precision of all four projects
at a fixed recall level close to 0.9, and the result is shown in
Figure 2.

In summary, our results show that R2C is more effective
than the baseline approach. The results show that R2C is an
advanced tool, and increases the reliability when we evaluate
the most effective feature.

D. The Most Effective Feature

To evaluate the effectiveness of individual features, we
rerun our evaluation with different settings. In particular,
based on the baseline approach, R2C-a denotes the setting
when we use only synonym feature; R2C-b denotes the
setting when we use only verb-object phrase feature; and
R2C-c denotes the setting when we use only structural
information feature. Then we also combines these features to
understand their impacts on each other.

We select the iBooks project in this study, and Figure 3
shows the results. As shown in Figure 3, the combination of
arbitrary two features improve the results of a single feature,
and the combination of all the three features improve the
results of any two features. The result highlights our tuning
algorithm, since it combines features to produce better
results. As far as a single feature is concerned, our results
show that the verb-object phrase is the most effective feature
to recover requirement-to-code links.

E. Discussion

Our results show that R2C is more effective in recovering
requirement-to-code links than the other approaches, since it
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Fig. 1. Evaluate result at a fixed recall level close to 0.9

achieves higher F-measure 0.07 - 0.20, or higher precision
5% - 23% at a fixed recall. We find that the higher
F-measure comes from more accurate extracted terms and
structural information. All these four approaches are based
on VSM, the baseline approach and O-CSTI extract
keywords by only removing stop words, whereas R2C and
Phrasing extract phrases to accurately convey the major
meanings of documents without losing much information.
With the initial links R2C and O-CSTI use structural
information of source code to improve the result, while the
baseline approach and Phrasing did not. Overall R2C
integrate many techniques (e.g., source code identifier
processing, semantic analysis, synonym identification and
source code structural analysis) to achieve the best result.

However, R2C still fail to recover some links. We find
four issues for further improvements. First, as we use only a
verb-object phrase to represent a sentence, it may lose
information in some cases. Second, we use WordNet to find
synonyms of terms. As WordNet does not include all terms,
we fail to identify synonyms for some terms. Third, some
programmers do not write code comments or name their
identifiers meaningfully, which reduces the effectiveness of
our approach. For example, we notice that sometimes
programmers write their private affairs in code comments,
and such comments are extracted as terms by our approach.
Last, we only use function calls, inheritance or realization
relationships from source code structural analysis, there may
be some other useful structural information we ignored.

In our study of overall result, we find the improvement in
the EasyClinic project is not so distinct as in other projects.
We checked the project, and find two factors. One is that in
this project, names of identifiers are in Italian, so we fail to
extract proper verbs and nouns from code. The other factor
is that in this project, programmers write comments for only
classes, so extracted terms are insufficient to recover links.

Why verb-object phrases are so important in recovering
requirement-to-code links? We manually check the
documents of iBooks project and find the reasons. There is a
sentence “Create an user, and initial the information of
borrowing books” in UC5, and “User login, and create a
request of borrowing books” in UC14. Without verb-object
phrases extraction, this sentence in UC5 is represented as the
vector {create, user, initial, information, borrow, book} and
the sentence in UC14 is represented as {user, login, create,
request, borrow, book}. As VSM is unordered, these two
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vectors are so similar that both UC5 and UC14 may be
linked to User.java that contains a method create(). In
fact, only UC5 should be linked to User.java and UC14 has
no relation with this code file. When we use verb-object
phrases as the terms of vector instead of single words, the
key information of these sentences are represented as
follows: {(create, user), (initial, information)} for UC5 and
{(login, user), (create, request), (borrow, book)} for UC14.
Using verb-object phrases as the terms of VSM, the
similarity between UC5 and User.java still return a high
value, but that between UC14 and User.java return a low
value with phrases mismatching. Then we can obviously
identify the valid link and irrelevant link by comparing their
similarity values with the threshold.

IV. RELATED WORK

Most approaches in literature are based on information
retrieval (IR) algorithms, such as vector space model
(VSM) [15] and probabilistic network model
(PNM) [12] [16], which calculate the calculate of links based
on the frequency and distribution of terms. For example,
Hayes et al. [15] conjunct a thesaurus with the VSM to
establish the links between requirements and code. LSI [17]
and Latent Dirichlet Allocation (LDA) [18] [19] were
applied to understand the semantics context of terms in the
requirements and code from the viewpoint of probability,
which is not real understand the meaning of terms. To real
understand the semantics context of terms from natural
language, ontology and glossaries [5] [6] were merged into
existing approaches.

There are also some researchers combine textual and
structural analysis of software artifacts for traceability link
recovery [11]. Based on existing traceability links recovered
by traditional IR-based approaches or manual search, these
tools recovered more missing links by using the structural
information of both documentations and source code. To
improve the precision of result, researchers try some
self-adapts approaches to learn from human feedback. A
limited number of tools integrate user feedback. For
example, ADAMS [17], POIROT [20], and RETRO [15]
collect relevance feedback on the links which have been
created automatically using IR techniques. Users can increase
or decrease term weighting used to compute the similarity
according to whether a term occurs in a rejected or confirmed
link [15] [21], and they also use eye-trackers to explore how
project analysts verify links between requirements and code.



However, this kind of approaches is still not good enough,
studies show that the feedback is incorrect approximately
25% of the time, which may negatively impact the quality of
the links [22], and the higher the quality of the starting
matrix, the worse the decision the analysts make [23].

As an improvement of the existing approaches, we
proposed a integrated approach to recover links
Requirement-to-Code traceability links (R2C). R2C applied
some new techniques (i.e. semantic analysis, and structural
analysis etc.) on three widely important features, then
achieved more information from requirements and code. And
these information are the key for the performance
improvement in recovering links.

V. CONCLUSION AND FUTURE WORK

This paper presents an approach R2C to recover
traceability links between requirements and code. With the
support of R2C, we conduct an empirical study on three
features. Results show that R2C combines various features to
produce better results, and the most effective feature is the
verb-object phrase in recovering links.

It is worthy mentioning that several issues need further
studies. First, R2C analyzes requirements only in for English,
we plan to improve and apply it in other languages. Second,
there are still much space for improving the precisions and
recalls of our approach. Future work will be devoted to using
global optimization techniques based on feedback, to further
improve our approach. Finally, besides requirement-to-code
links, links between other software artifacts with our
techniques will be considered in future work.
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