
CPDScorer: Modeling and Evaluating Developer
Programming Ability across Software Communities

Weizhi Huang†,Wenkai Mo†,Beijun Shen‡,Yu Yang†,Ning Li†
School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, Shanghai, China
Email: ‡bjshen@sjtu.edu.cn

Abstract—Since developer ability is recognized as a determi-
nant of better software project performance, it is a critical step
to model and evaluate the programming ability of developers.
However, most existing approaches require manual assessment,
like 360 degree performance evaluation. With the emergence of
social networking sites such as StackOverflow and Github, a vast
amount of developer information is created on a daily basis. Such
personal and social context data has huge potential to support
automatic and effective developer ability evaluation. In this paper,
we propose CPDScorer, a novel approach to model and score the
programming ability of developer through mining heterogeneous
information from both Community Question Answering (CQA)
sites and Open-Source Software (OSS) communities. CPDScorer
analyzes the answers posted in CQA sites and evaluates the
projects submitted in OSS communities to assign expertise scores
to developers, considering both the quantitative and qualitative
factors. When modeling the programming ability of developer, a
programming ability term extraction algorithm is also designed
based on set covering. We have conducted experiments on Stack-
Overflow and Github to measure the effectiveness of CPDScorer.
The results show that our approach is feasible and practical in
user programming ability modeling. In particular, the precision
of our approach reaches 80%.

Index Terms—Github; StackOverflow; Programming Ability
Modeling; Developer Ability Evaluation.

I. INTRODUCTION

Software developers participate in a diversity of software
communities simultaneously, such as Community Question
Answering (CQA) sites and Open-Source Software (OSS)
communities. For example, in StackOverflow1, which owns
more than 4,000,000 registered users and 10,000,000 question-
s2, developers post questions to seek for help from other peers,
and they are also able to provide valuable answers for others;
in Github3, which has more than 9 million developers and
over 21.1 million repositories by 2015, they collaboratively
develop open-source softwares by committing code to software
repositories. These software communities create and store a
vast amount of developer information on a daily basis. Thus
they provide huge potential to model and evaluate the ability
of developer effectively, which plays an important role in
developer recommendation, staff training as well as software
project planning.

‡ Corresponding Author
1http://stackoverow.com/
2https://en.wikipedia.org/wiki/Stack Overflow
3https://github.com/

 Java: 8 Php: 7.5 Scala: 6

Java: 6.5
Php: 7.5
Scala: 5.1
C++: 8.3

 Rafael in CQA Site Rafael in OSS Community

 Java: 5 Scala: 4.2 C++: 8.3

 Rafael

 ProjectsAnswer
Posts

Ability Modeling Based
on Project Quality

Ability Modeling Based
on Answer Quality

Figure 1: An Example of Developer Ability Modeling across
Two Software Communities

Some approaches have been proposed to target the problem
of developer ability modeling in software communities [1] [2].
However, these approaches are restrict to a single community.
For instance, in CQA sites, user ability can be reflected
by his or her answer quality. Generally, users who provide
high quality answers are more likely to own high expertise
in specified subjects. The voting score of each answer is a
kind of measure of answer quality as it is given by users
according to their satisfaction towards the answer. Similarly, in
OSS communities, developers who provide projects with high
quality tend to be with a high ability in programming. In this
paper, we consider developer ability modeling across software
communities for more comprehensive and precise evaluation
results. Figure 1 shows a simple example. Developer Rafael
participates in both a CQA site and an OSS community. He is
assigned ability scores under different programming skills in
both two communities, and the ability scores from these two
communities produce his final ability scores.

However, it is difficult to model and evaluate the ability
of developer crossing communities as we need to link users
between different communities first. Besides, integrating het-
erogeneous data of a developer from different communities
is challenging. Moreover, how to derive the concrete pro-
gramming ability terms to describe the programming ability
of developer is also a problem. In this paper, we propose
a novel approach CPDScorer to address these challenges.
CPDScorer integrates one CQA site with one OSS community
to corporately assess the programmer’s ability from both
answer quality analysis and project code evaluation. Specif-
ically, CPDScorer models the programming ability scores of
developer under various programming skills. To model the
programming ability, an algorithm based on set covering is
proposed to extract a set of programming ability terms. Then

every answer and project are labeled with an ability term
and scored based on their quality. Given answer-based ability
scores in CQA site and code-based ability scores in OSS
community under different ability terms, we combine these
scores by taking a weighted sum of them as the final ability
scores of developers.

This paper makes the following contributions: (1) We
propose an approach to model and evaluate the program-
ming ability of developer crossing two software communities.
Specifically, we combine answer quality evaluation in a CQA
site and code quality analysis in an OSS community to model
the ability of developer more comprehensively. (2) We design
a programming ability term extraction algorithm based on set
covering to model ability scores and ability terms jointly.

II. RELATED WORK

A. Developer Ability Modeling in Communities

To model and evaluate the ability of developer in com-
munities, several methods have been proposed. Zhang et al.
proposed a measure called Z-score that combined user’s asking
and replying patterns to rate the relative expertise of user
[3]. Liu et al. proposed CQARank to model each user’s
ability as expertise scores under various topics by combining
textual content learning with link analysis in StackOverflow
[1]. Venkataramani and Asadullah modeled the expertise of
developers in a target domain by mining their activities in
different open-source projects [2]. John and Gail presented an
empirical evaluation of two approaches for determining the
implementation expertise of developer from the data in source
and bug projects [4]. All these methods mentioned above only
analyze information from a single software community, and
can not utilize data across different communities.

B. Answer Quality Evaluation in CQA Sites

There are some researches to evaluate the answer quality in
CQA sites. Jeon et al. presented a model to predict the quality
of answers based on a set of non-textual features extracted
from answers, such as click counts, answerers acceptance ratio
and answer length [5]. Agichtein et al. casted the problem
of answer quality ranking as a binary classification problem
and proposed a classification framework of estimating answer
quality based on content-based features and usage-based fea-
tures [6]. Shah et al. used 13 different criteria to assess the
overall quality of answer and expanded the prediction model
by extracting several features of the questions, the answers,
and the users who provided them [7]. When modeling the
developer’s ability by analyzing the answer quality in CQA
sites, our work borrows the idea in [5].

C. Open-Source Project Quality Analysis

With the emergence of open-source projects, measuring and
evaluating their quality has attracted a lot of attention. Jarczyk
et al. developed two metrics of quality for the open-source
projects in Github based on both the project popularity and
how fast the reported issues were solved, and analyzed the

influence of collected attributes describing project and devel-
oper on quality [8]. Different from the above approach, we
focus on source code evaluation for project quality. Stamelos
et al. measured quality characteristics of Linux applications
by a kind of software measurement tool and compared the
results with the industrial standard proposed by the tool [9].
Barkmann et al. developed tools to collect code metric data
from projects and described the statistical significance of
individual metrics [10]. Chawla et al. implemented five metrics
such as lines of code, cyclomatic complexity and lines of
comment to analyze a set of java programs as to judge their
performance with respect to the metrics [11]. We borrow the
idea from [11] to analyze the quality of project source code.

III. APPROACH

Our proposed approach CPDScorer can model and evaluate
the programming ability of developer automatically, by ana-
lyzing data from one CQA site and one OSS community.

A. Approach Overview

The overview of CPDScorer approach is illustrated in
Figure 2. It is composed of five steps: (1) Identity Linkage first
links users between a CQA site and an OSS community. (2)
Then, Programming Ability Term Extraction extracts a set of
programming ability terms based on set covering. Meanwhile,
each answer or project is assigned an ability term by its topic.
(3) Answer-Based Ability Scoring analyzes the quality of each
answer in the CQA site, and assigns ability scores to the
question repliers by ability terms of answers. (4) Code-Based
Ability Scoring evaluates the quality of each software project in
OSS community using code analysis technology, and scores
the developers by specific project ability terms. (5) Finally,
Ability Score Composing takes a weighted sum of answer-
based ability scores and code-based ability scores as the final
programming ability scores of developers.

B. Identity Linkage Across Software Communities

There are already several methods proposed to link users in
different software communities [12] [13]. In these methods,
each user is represented as a pair (username, email) in a
community. However, they only considered username and
email of a user while ignoring other important information
like programming skills. As we need to link users between a
CQA site and an OSS community, we adopt our novel tagging-
based approach TBIL [14]. The TBIL approach employs
skills (measured by tags), usernames and concerned topics of
developers as hints, and uses a decision tree-based algorithm
and another heuristic greedy matching algorithm to link user
identities.

C. Programming Ability Term Extraction

After linking developers between a CQA site and an OSS
community, we then need to define a set of programming
ability terms to specifically describe the programming ability
of developers. In some software communities, software docu-
ments are labeled with tags. For example, posted questions in

Answer-Based
Ability Score

Answer-Based
Ability Scoring

Programming
Ability Score Code-Based

Ability Score

Project Ability
Term

Answer Ability
TermIdentity

Linkage
Programming
Ability Term
Extraction

Ability Score
Composing

 CQA Site

 OSS Community

… Projects

Tags

Answers…

Code-Based
Ability Scoring

Figure 2: Overview of CPDScorer Approach

StackOverflow are all assigned tags. These tags can be treated
as ability terms because they all refer to terms about software
engineering. We propose a programming ability term extrac-
tion algorithm based on set covering to derive ability terms
about programming from tags. The algorithm takes a candidate
programming ability term set, and a set of labeled documents
(e.g., labeled answers, labeled projects, etc.) as input. It first
filters out tags with frequencies less than a threshold and sorts
the rest tags by their frequencies in descending order. Next,
for each labeled document in the document set, if any tag
of the document equals a certain candidate ability term, the
ability term will be contained in the final ability term set and
this document is set as covered. Finally, if the percentage of
covered documents among all the documents (covering rate)
reaches 90% or higher, we output the final ability term set.
Otherwise, the threshold will be automatically adjusted until
the covering rate is higher than 90%.

To perform the algorithm, we first need to construct a
candidate programming ability term set. We take the set of
tags in a community as the initial ability term set. Then we
remove tags which are unrelated with programming ability
and form a new set of tags as the candidate ability term set.
For example, the tags ‘excel’ and ‘firefox’ can not reflect the
programming ability of developer. As the removing process is
done manually, we will clean some low frequency tags before
the process to improve performance. When constructing the
candidate ability term set in two different communities, there
are three cases: (1) If both two communities do not have the
tagging system, then we can choose the tags in StackOverflow
because StackOverflow has a relatively mature tagging system
with more than 38,000 diverse tags. (2) If only one community
has the tagging system, tags in this community are used. (3)
If both two communities have the tagging system, we select
the intersection of tags in these two communities.

The detailed description of the ability term extraction proce-
dure is shown in Algorithm 1. It takes a candidate ability term
set S, and a labeled document set D as input. The algorithm
first initializes the covering rate µ to 0 and the threshold θ to
5000. θ will be automatically adjusted until the covering rate
is higher than 90%. In each repeat, the threshold is gradually
reduced by 300. Then our algorithm filters out some tags of
which the frequencies are less than the threshold and sorts tags
by their frequencies in descending order (Lines 1-6). For each

Algorithm 1 Programming Ability Term Extraction

Input:
candidate programming ability term set S;
labeled document set D = {d1, d2, . . . , dN};

Output:
programming ability term set H;

1: initialize covering rate µ to 0
2: initialize threshold θ to 5000
3: repeat
4: automatically adjust θ
5: select the tags in S whose frequencies are larger than

θ to form a new candidate set T = {t1, t2, . . . , tM}
6: sort T by the frequencies of tags in descending order
7: for each dn in D do
8: for each ti in T do
9: if one of the tags in dn equals ti then

10: set the status of dn as covered
11: put ti in H
12: end if
13: end for
14: end for
15: calculate and update µ
16: until µ is larger than 90%
17: return H;

labeled document, if any of its tags equals a certain candidate
ability term, the status of this document is set as covered.
After traversing every document, we calculate and update the
covering rate (Lines 7-16). Finally, the algorithm outputs the
final ability term set (Line 17).

Furthermore, we manually divide the programming ability
terms into five categories, including ability terms about pro-
gramming language (such as java, php, etc.), database (such
as mysql, mongodb, etc.), framework (such as asp.net, spring,
etc.), library (such as jquery, backbone.js, etc.) and others
(such as Android, etc.).

D. Answer-Based Ability Scoring

High quality answers are expected to reflect that the replier
has a good knowledge of the specific programming domain
(described by the programming ability term) the answers
belong to. So, the first sub-step is to assign the appropriate

ability term to every answer by matching its tags with terms
in the programming ability term set. However, answers in some
CQA sites are not labeled with any tags. For such answers,
we extract keywords from the content of each answer using
TextRank algorithm [15]. And we match these keywords with
programming ability terms to select a most representative term
for the answer.

Then the second sub-step is to analyze the quality of each
answer in CQA site, and work out the ability scores of the
replier. In most CQA cites, answers can be voted up or down
considering their quality. Users can also comment on them. We
extract features determining answer quality from each answer
post, such as answer length, the number of upvotes, and the
number of downvotes. After scoring each answer based on
its features, the ability score for developer u under a specific
programming ability term t is the average score of answers
posted by the developer of which the ability term is just t,
which is defined as:

SEScore(u, t) =

∑
ans∈Answer(u)H(ans, t)AScore(ans)∑

ans∈Answer(u)H(ans, t)
(1)

where AScore(ans) denotes the evaluation score of answer,
Answer(u) represents all the answers posted by the developer
u and H(ans, t) is an indicator function, returning 1 if the
ability term of answer is t.

E. Code-Based Ability Scoring
To model the ability scores of developer based on project

quality, we need to obtain the ability term for every project
first. As some OSS communities do not have a tagging system,
we extract keywords from the description files of projects
like README files in Github using TextRank algorithm [15].
The extracted keywords will later be used to match the
ability terms for the project ability term. Then we use static
code analysis tool Understand4 to extract code metrics (e.g.,
CountLineCode, AvgLine, CountPath, etc.) and score projects
with code metrics.

Given the score of one project p a developer u involved
in, we define Equation (2) to calculate the ability score
GEScore(u, t) of the developer under a specific project term
t, where I(p, t) is an indicator function, returning 1 if the
ability term of project is t. We use P (u) to denote all the
projects that developer u are involved in and we define all
the developers in the project as U(p). PScore(p) denotes the
evaluation score of project p. The contribution that developer u
makes to project p is defined as Cont(u, p), which is provided
in our dataset. If the contribution of developers is not offered,
we can measure it by their commit frequency in the project.

GEScore(u, t) =
∑

p∈P (u)

I(p, t)PScore(p)
Cont(u, p)∑

u∈U(p) Cont(u, p)

(2)
The project score is allocated to developers according to their
contribution to the project. The more contribution they make

4https://scitools.com/

to the project, the higher score they are allocated. For the
developer’s ability score under a certain skill t, we sum up all
the scores of projects with the target ability term t that the
developer is involved in.

F. Ability Score Composing

Given a target developer u, Ability Score Composing com-
bines the two ability scores along with their programming
ability term t produced by Answer-Based Ability Scoring and
Code-Based Ability Scoring into a unified expertise score. We
define the final expertise score of developer u in programming
skill t denoted by EScore(u, t) as follows:

EScore(u, t) = α×SEScore(u, t)+β×GEScore(u, t) (3)

where SEScore(u, t) and GEScore(u, t) are the ability s-
cores of programming skill t evaluated by the two scoring
components respectively, and α, β ∈ [0, 1] are weights as-
signed to the two scores.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct experiments to validate the
performance of CPDScorer. We first present our experimental
settings and then analyze the results of experiments.

A. Experimental Settings

As StackOverflow is one of the most famous CQA sites and
Github is a representative OSS community, we select them
to conduct the experiments. The data of StackOverflow and
Github is before January, 2015. There are totally 3,106,381
posts including 255,401 answer posts, and 32,207 tags. Be-
sides, there are totally 5791 linked developers involved in
133,895 projects. We extract 305 programming ability terms
from the tags in StackOverflow. And the extracted answer
features and code metrics are shown in Table I and Table II.
There are 5,230 answers and 2,500 projects in training data
rated by five master students whose major is computer science
on scale 1 to 10. As CPDScorer can model the developer’s
ability scores under each ability term, we select the top-10
developers in each domain by their ability scores. Then, we
ask another five students to evaluate and rate our results to
show whether they are satisfied with the results. We convert
the rating into a two-class decision (just ‘yes’ or ‘no’). We
assume that a rating of 3 or higher means ‘yes’, otherwise
it means ‘no’. Specifically, they will investigate the detailed
profiles of the corresponding developers in both StackOverflow
and Github, including the quality of their answers, the quality
of their projects, their activity of contribution and other related
information, to determine whether the results are reasonable.
The precision of the CPDScorer approach is defined as the
following equation, where M represents the number of ‘yes’
and N denotes the total number of results (the number is 10
in our experiments).

Precision =
M

N
(4)

TABLE I: LIST OF FEATURES

Features Description Coefficients
Answer Length The length of the answer 0.0023

Answer Vote Score The score of the answer is calculated for based on the number of upvotes and downvotes of the answer 0.0781

Comment Count The number of comments to the answer 0.0113

Answer Acceptance Whether the answer is accepted by the question owner is a direct feedback on the quality of the answer 0.2388

Number of DownVote The number of the DownVote the answer receives, which shows the answer is useless -0.019

Number of UpVote The number of the UpVote the answer receives, which shows the answer is useful 0.0041

Number of Answers The number of answers for the given programming topic 0.0038

TABLE II: LIST OF CODE METRICS

Code Metrics Description Coefficients
AvgCyclomatic Average cyclomatic complexity for all nested functions or methods -3.9903

AvgCyclomaticModified Average modified cyclomatic complexity for all nested functions or methods 4.8879

AvgCyclomaticStrict Average strict cyclomatic complexity for all nested functions or methods -0.6188

AvgLineBlank Average number of blank for all nested functions or methods -0.4428

AvgLineCode Average number of lines containing source code for all nested functions or methods 0.8015

CountDeclFunction Number of functions 0.7291

CountLineBlank Number of blank lines -0.845

CountLineCode Number of lines containing source code -1.6516

CountLineCodeExe Number of lines containing executable source code -0.4279

CountStmtExe Number of executable statements 9.4282

Cyclomatic Cyclomatic complexity 0.4577

SumCyclomaticStrictv Sum of strict cyclomatic complexity of all nested functions or methods -7.4112

B. Developer Ability Modeling Using Different Regression
Methods

We adopt two widely used machine learning methods: Lin-
ear Regression and Regression Tree M5P [16], and separately
apply these two methods to both answer features and code met-
rics. Thus there are four combinations of methods, as shown
in Table III. To compare the final results of ability scores using
different combinations of methods for their effectiveness, we
randomly select three ability terms from each ability category
and pick the top-10 developers with each ability term to be
rated by those five students every time. And the process will be
repeated five times. Furthermore, we take the average precision
of score results under all ability terms from a specific category
as precision of the category. However, we exclude the ‘other’
category on account that the number of developers ranking top
can’t reach 10 for most of the ability terms from that category.

TABLE III: COMBINATION OF DIFFERENT METHODS

Linear Regression for AF M5P for AF

M5P for CM M5P×LR M5P×M5P

Linear Regression for CM LR×LR LR×M5P

Figure 3 depicts the results. In Figure 3, the horizontal
axis represents the combinations of different methods and
the vertical axis denotes their respective precisions in the
four categories. From the results, we can see the combination
LR×M5P achieves the best performance with the precision of

Figure 3: Results of Different Combinations of Methods

80% among the four combinations in all categories followed
by M5P×M5P while LR×M5P has the worst precision. Thus
in our experiment, we apply the M5P to answer features and
Linear Regression to code metrics.

C. Features Contributions

When applying M5P to answer features and Linear Regres-
sion to code metrics, it has the best performance. Thus only the
coefficients of such combination are presented and discussed.
Because the result of M5P is a tree of regression models, we
just select one of these models for analysis, which is shown
in Table I.

It is not surprising the features ‘Answer Vote Score’ and
‘Answer Acceptance’ have a significant positive effect on the
outcome quality scores, while ‘Number of Downvote’ has a

Figure 4: Precisions at Different Values of α

negative effect. When the questioner accepts one answer, it
means the answer works for him or her well. The larger the
‘Answer Vote Score’ is, the higher value the answer will be
thought of. On the contrary, ‘Number of Downvote’ suggests
that users consider the answer is useless.

As shown in Table II, more than half features have negative
impacts on the quality of project source code. Most of them
do not affect the performance by much. However, the features
‘AvgCyclomatic’, ‘CountStmtExe’, and ‘SumCyclomaticStric-
t’ have significant contribution to the code quality.

D. Parameter Sensitivity Analysis

In this experiment, we vary the weights α and β assigned
to ability scores from the two communities to understand the
impact of varying their values on the precision. The sum of α
and β is always 1.0, so we just adjust the value of α. We start
by initializing α to 0. Then, we incrementally increase the
value of α by 0.1 until it reaches 1. For each combination of
α and β, we evaluate the top-10 developers. As the number of
ability terms about programming language accounts for nearly
half of all ability terms, we focus on analysing scores under
programming languages. We randomly select four ability terms
about programming language, such as java, javascript, c++ and
php.

Figure 4 illustrates the precisions at different values of α. In
Figure 4, horizontal axis denotes different values of α, ranging
from 0 to 1. The values in vertical axis reflect the precision
of corrsponding α. The presicion of CPDScorer remains quite
stable across a wide range of parameters α. The best precision
is achieved among the four ability terms when the value of α
becomes 0.6. As a result, we choose the value 0.6 for α and
the value 0.4 for β in our work.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach called CPDScor-
er to model and evaluate the programming ability of developers
crossing two communities. CPDScorer considers both answer
quality about programming topics in a CQA site and project
source code quality in an OSS community. A programming
ability term extraction algorithm is also designed to label every
answer and project with an ability term. Two famous commu-
nities, StackOverflow and Github, are selected to validate the
feasibility of our approach.

To evaluate the programming ability of developers more
accurately, there are still some aspects for improvement in
the future: (1) When modeling the developer’s ability by esti-
mating their answer posts, we will extract more features that
contribute to the answer quality in CQA sites. In particular,
the profile of the replier may play an important role in answer
quality. (2) When modeling the programming ability in OSS
communities, we can explore other factors such as the commit
messages of developer for project quality evaluation.

REFERENCES

[1] L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang, H. Sun, and Z. Chen,
“Cqarank: jointly model topics and expertise in community question
answering,” in Proceedings of the 22nd ACM international conference
on Conference on information & knowledge management, pp. 99–108,
ACM, 2013.

[2] R. Venkataramani, A. Gupta, A. Asadullah, B. Muddu, and V. Bhat,
“Discovery of technical expertise from open source code repositories,”
in Proceedings of the 22nd international conference on World Wide
Web companion, pp. 97–98, International World Wide Web Conferences
Steering Committee, 2013.

[3] J. Zhang, M. S. Ackerman, and L. Adamic, “Expertise networks in
online communities: structure and algorithms,” in Proceedings of the
16th international conference on World Wide Web, pp. 221–230, ACM,
2007.

[4] J. Anvik and G. C. Murphy, “Determining implementation expertise
from bug reports,” in Mining Software Repositories, 2007. ICSE Work-
shops MSR’07. Fourth International Workshop on, pp. 2–2, IEEE, 2007.

[5] J. Jeon, W. B. Croft, J. H. Lee, and S. Park, “A framework to predict
the quality of answers with non-textual features,” in Proceedings of
the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 228–235, ACM, 2006.

[6] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne, “Finding
high-quality content in social media,” in Proceedings of the 2008
International Conference on Web Search and Data Mining, pp. 183–
194, ACM, 2008.

[7] C. Shah and J. Pomerantz, “Evaluating and predicting answer quality
in community qa,” in Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval,
pp. 411–418, ACM, 2010.

[8] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki,
“Github projects. quality analysis of open-source software,” in Social
Informatics, pp. 80–94, Springer, 2014.

[9] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality
analysis in open source software development,” Information Systems
Journal, vol. 12, no. 1, pp. 43–60, 2002.

[10] H. Barkmann, R. Lincke, and W. Lowe, “Quantitative evaluation of
software quality metrics in open-source projects,” in Advanced In-
formation Networking and Applications Workshops, 2009. WAINA’09.
International Conference on, pp. 1067–1072, IEEE, 2009.

[11] M. K. Chawla and I. Chhabra, “Implementing source code metrics
for software quality analysis,” in International Journal of Engineering
Research and Technology, vol. 1, ESRSA Publications, 2012.

[12] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan, “Hydra: Large-
scale social identity linkage via heterogeneous behavior modeling,” in
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pp. 51–62, ACM, 2014.

[13] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. van den Brand,
“Who’s who in gnome: Using lsa to merge software repository identi-
ties,” in Software Maintenance (ICSM), 2012 28th IEEE International
Conference on, pp. 592–595, IEEE, 2012.

[14] Y. C. Wenkai Mo, Beijun Shen and J. Zhu, “Tbil: A tagging-based
approach to identity linkage across software communities,” in APSEC:
Asia-Pacific Software Engineering Conference, pp. 56–63, 2015.

[15] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for
wireless sensor networks,” Computer communications, vol. 30, no. 14,
pp. 2826–2841, 2007.

[16] W. Han, L. Jiang, T. Lu, and X. Zhang, “Comparison of machine learning
algorithms for software project time prediction,” International Journal of
Multimedia and Ubiquitous Engineering, vol. 10, no. 9, pp. 1–8, 2015.

