
A Scenario-Based Approach to Predicting Software Defects
Using Compressed C4.5 Model

Biwen Li, Beijun Shen, Jun Wang, Yuting Chen
School of Software

Shanghai Jiao Tong University
Shanghai, China

{amis.lbw, bjshen}@sjtu.edu.cn

Tao Zhang, Jinshuang Wang
Institute of Command Information System

PLA University of Science and Technology
Nanjing, China

Abstract—Defect prediction approaches use software metrics and
fault data to learn which software properties are associated with
what kinds of software faults in programs. One trend of existing
techniques is to predict the software defects in a program
construct (file, class, method, and so on) rather than in a specific
function scenario, while the latter is important for assessing
software quality and tracking the defects in software
functionalities. However, it still remains a challenge in that how a
functional scenario is derived and how a defect prediction
technique should be applied to a scenario. In this paper, we
propose a scenario-based approach to defect prediction using
compressed C4.5 model. The essential idea of this approach is to
use a k-medoids algorithm to cluster functions followed by
deriving functional scenarios, and then to use the C4.5 model to
predict the fault in the scenarios. We have also conducted an
experiment to evaluate the scenario-based approach and
compared it with a file-based prediction approach. The
experimental results show that the scenario-based approach
provides with high performance by reducing the size of the
decision tree by 52.65% on average and also slightly increasing
the accuracy.

Keywords-Defect Prediction; Scenario; Software Clustering;
C4.5 Model

I. INTRODUCTION
Defect prediction has been widely used in industry to

predict the amount and the kinds of software defects in a
system [1-5]. It can be used to identify the modules that are
most likely to contain defects prior to testing. A number of
defect prediction techniques and prediction models have been
proposed to predict defects in large-scale software systems,
which can be divided into two respects: metric-based and
historical data-based. The former refers to an idea of predicting
of defects on the basis of the software and its structure, size,
coding style, etc. [6-8], and the latter refers to the idea of
predicting of defects by mining the code repositories, analyzing
the source code changes, and learning from the previous
software defects [9-14].

However, many existing techniques tend to predict the
defects in some program constructs (file, class, method, and so
on) rather than in some specific function scenarios, while the
latter is important and necessary for assessing the software
quality and tracking the defects in software functionalities [7,
15, 16]. It needs to perform defect prediction at the scenario
level, which is motivated by two examples:

• When a program is suspected to contain some software
defects, an engineer usually reveals and recovers the
defects in the program by diagnosing the software
functions or scenarios and locating the defects inside.

• A modification of a program may several methods be
changed. When a defect is hidden in a change, a
programmer has to go through the software functions
and scenarios instead of inspecting the modified code
line by line.

It still remains a challenge in that how a defect is located
and fixed in some software function or scenario, although some
previous researches have shown that a fine-grained defect
prediction can result in an overall improved expressiveness
(i.e., granularity and context given to a developer) and
effectiveness (i.e., accuracy of the prediction) [17]. One main
difficulty for this is to derive a functional scenario and apply a
defect prediction technique to a scenario. For example, when a
functional scenario is defined by chaining all the functions
called, it is not easy to predict the defects on the basis of the
state of the function call stack, and it is also not easy to locate
the actual defect when a failure is caused by the top function in
the stack.

In this paper, we propose a scenario-based approach to
defect prediction using compressed C4.5 model. In the study,
we use a k-medoids algorithm to cluster functions followed by
deriving functional scenarios, and then apply the C4.5 model to
predict the fault in the scenarios. A two-dimension distance
matrix is used in construction of the call graph, which reduces
the computational complexity to ������� . Compressed C4.5
model is used to improve the defect prediction accuracy during
the model learning phase. C4.5 algorithm is an algorithm
developed by Quinlan, which builds a decision tree from a set
of training data by using the concept of information entropy
[27]. The Spearman’s rank correlation coefficient is introduced
into the new model so that the choosing of attribute as the root
node of the decision tree becomes linear.

The main contributions of this paper are summarized as
follows:

• Approach. We propose a scenario-based approach to
deriving functional scenarios from programs, and to
defect prediction based on compressed C4.5 model.

• Experiment. We have conducted an experiment to
evaluate the scenario-based approach and compared it
with a file-based prediction approach. The
experimental results show that the scenario-based
approach provides with high performance by reducing

2014 IEEE 38th Annual International Computers, Software and Applications Conference

0730-3157/14 $31.00 © 2014 IEEE

DOI 10.1109/COMPSAC.2014.64

406

the size of the decision tree by 52.65% on average and
also slightly increasing the accuracy.

The outline of this paper is organized as follows: Section II
presents the related work. Section III introduces a scenario-
based approach, which is used to extract the functional
scenarios by using a clustering algorithm. Section IV
introduces the compressed C4.5 models. Section V presents an
experiment for assessing the effectiveness of the defect
prediction approach, and then makes a discussion. Section VI
draws the conclusions and points out the future work.

II. RELATED WORK
This section presents the background knowledge about

defect prediction and introduces the related work about graph
mining and program clustering in source code and the
researches in C4.5 models.

A. Defect Prediction
Software defect prediction is an effective way to optimize

the allocation of testing resources and improve software quality.
It can be used to identify modules that are most likely to
contain defects prior to the testing phase. In the past decades,
various methodologies have been proposed and validated to be
effective in predicting software defects. Many researchers have
designed new defect prediction algorithms and/or new metrics
for predicting software defects, most of which are used to
predict defects through machine learning approaches. Here we
focus on data prediction at various levels, such as at the
components, files, and methods levels.

Many researches have been conducted to predict defects on
coarse-grained level [7, 13, 41]. Zimmermann and Nagappan
[41] have predicted defects based on code dependencies. They
build dependency graphs and extract metrics using network
measures. Further work has been done to leverage the
architectural dependencies and churn measures [13]. New
metrics have been defined and evaluated on Windows Server
2003.

Schröter et al. [7] have used relationships between
components. Their aim was to help designers explore and
assess design alternatives in terms of predicted quality easily.
The study was conducted on 52 Eclipse plug-ins, and the
results indicated that the software design, as well as the past
failure history, can be successfully used in defect prediction.
The models require relationships between components and this
information is typically defined at the design phase, helping
identify the failure-prone components as early as possible.

Defect prediction at the coarse-grained level can offer
satisfactory prediction performance, while fine-grained
prediction approaches can be more helpful in finding bugs.
Hata et al. [42] have developed a fine-grained version control
system for quality assurance. The experimental results showed
defect prediction model at the method level is more effective
than those at the package or file levels. Their work indicates
that prediction accuracy is sacrificed for bug finding and
should be solved in future work, which motivates our study.

In our work, we focus on functional scenarios. Nagappan et
al. [4] have verified that function call related metrics can be
used to predict the likelihood of defects accurately. In our study
we propose a methodology about how the functional scenario

is derived and clustered in order to increase accuracy at fine-
grained level.

B. Graph Mining and Program Clustering in Source Code
Graph mining and program clustering has been widely used

in analyzing software source code. Mitchell and Mancoridis
[22] have presented and analyzed a clustering system, named
Bunch. To produce a decomposition of a system in subsystems,
Bunch uses searching techniques to partition a graphical
representation of the program which represents software
entities and their relations. Doval et al. [23] have proposed a
structural approach to grouping software entities into clusters
on the basis of the genetic algorithms. Similar to [22], the
quality of clustering depends on the definition of fitness
functions and searching algorithms.

Clustering algorithms based on structural information in
source code have already been successfully used in the analysis
of the software architecture evolution [24, 25]. For example,
Wu et al. [24] have presented a comparative study of a number
of clustering algorithms (e.g., an agglomerative clustering
algorithm based on the Jaccard coefficient and the complete
linkage update rule which uses 0.75 and 0.90 as the cutting
points). To partition a software system into some meaningful
subsystems, all algorithms need to be manually configured
(e.g., the specification of cutting points and fitness functions).

Similarly, Bittencourt et al. [25] have presented an
empirical study to evaluate four widely known clustering
algorithms on a number of software systems implemented in
Java and C/C++. The algorithms include edge betweenness
clustering, k-means clustering, modularization quality
clustering, and design structure matrix clustering.

One application for clustering algorithm is to debug defect
prediction [38, 39]. Fry et al. [38] have adopted a clustering
algorithm to leverage both syntactic and structural information
available in static bug reports to accurately cluster the related
reports, thus expediting the maintenance process. Scanniello et
al. [39] have proposed fault prediction at the class level by
using the BorderFlow clustering algorithm.

The scenario extraction approach we adopt in this study is
based on call graph mining and k-medoids clustering algorithm.
The function call graph is taken as one of the graph mining
algorithm and has been adopted for defect prediction [30].
However, the scenario-based approach is different from the
previous researches, since it combines function call with the
clustering algorithm and is used to predict defects at a fine-
grained level.

C. C4.5 Decision Tree
Decision tree learners have been applied to defect

prediction but been proved not precise enough. Knab et al. [26]
has adopted decision tree learners to predict defects on the
basis of source code metrics, modification report metrics and
defect report metrics, and they have achieved 62 percentages
on prediction accuracy but wrongly classified nearly 40 percent
of instances.

C4.5 is a decision tree algorithm that constructs decision
trees in a top–down recursive divide-and-conquer manner [27].
C4.5 algorithm has been effectively applied to defect prediction
[31-33].

Existing techniques have improved C4.5 in different ways
[34-37, 40]. Quinlan [34] has shown the weakness of C4.5 with

407

1. Set the initial values in the distance matrix as positive
infinity.

2. For each edge(i,j) in Graph, set the distance value
(matrix[i][j] and matrix[j][i]) as weight 1.

3. Let distance++. For each value in the matrix, if the
value matrix[i][j] is (distance-1), there exists a call
relationship between i and j. Set the edge value as
distance.

4. Repeat step 3 until there is no change in the distance
value.

continuous attributes and applied an MDL-inspired penalty to
decrease the tree size and increase the predictive accuracy.
Ruggieri [35] has proposed an efficient version of the
algorithm, called EC4.5. It improves C4.5 by adopting the best
among three strategies for computing a information gain of
continuous attributes. Zhou et al. [36] have combined neural
network with C4.5 algorithm. The algorithm trains a neural
network ensemble, and then employs the trained ensemble to
generate a new training set through replacing the desired class
labels of the original training examples with those outputs from
the trained ensemble. Baglioni et al. [37] have improved C4.5
by means of prior knowledge. The adaption considers other
knowledge in real application (e.g. owned by experts of the
field) that can be used in conjunction with the one hidden
inside the examples. Thakuret et al. [40] have re-optimized ID3
and C4.5 decision tree algorithm by providing a simple
modification to the attribute selection methods. The
optimization modifies the SplitInfo calculation in C4.5 and gets
a decision tree with high classification accuracy.

In this study, the Spearman’s rank correlation coefficient is
introduced into the new models so that the choosing of attribute
as the root node of the decision tree becomes much more in
line.

III. A SCENARIO-BASED APPROACH
Next provides the details about the scenario-based approach.

The approach consists of two steps:
1) Call Graph Distance Matrix Algorithm. Functional

scenarios are extracted statically from the source code. The
codes will be represented as a call graph, where the nodes are
the functions and the edges are the call relationships among
the functions. A 2-dimension matrix is adopted to represent
the distances among the nodes in the call graph.

2) Scenario Clustering. Based on the graph representation,
scenarios are grouped into clusters using k-medoids algorithm.

A. Call Graph Distance Matrix Algorithm
A scenario is defined on the basis of function calls. The

first step of scenario deriving is to build a call graph. A call
graph is a directed graph that represents the function calling
relationship among subroutines in a program [18].

The distance between two nodes in a call graph is defined
as the shortest distance between the two nodes. One classical
algorithm for shortest distance is the Dijkstra Algorithm1.

Let a graph contain ��� nodes and ��� edges. The time
complexity of Dijkstra algorithm is �����	�. If a min-priority
queue (i.e. the Fibonacci Heap) is used, the time complexity
can be reduced to �����
 �����
���� [19].

A 2-dimension matrix can also be used to represent the
distances among the nodes in the call graph. When the 2-
dimension matrix is used, the shortest distance will be
computed for �	 ����	� times, and the overall time complexity
will reach up to �������.

Three properties are held by a call graph:
• The distance between 2 nodes is of a length 1.
• The graph diameter is small with respect to the number

of nodes. For example, a call graph with over 10000
nodes has a diameter less than 100.

1 http://en.wikipedia.org/wiki/Dijkstra’s_algorithm

• A graph contains a limited number of edges. In other
words, a function call graph is a sparse graph.

With these properties, a call graph distance matrix is
relatively sparse and most distance values in the matrix are
small positive integers. Different from the existing algorithms
for construction of call graphs, we build the distance matrix on
the basis of the connection relationships among nodes.

Algorithm 1 shows the algorithm for construction of call
graph distance matrix. The input includes an initial graph and
an empty 2-dimension distance matrix. The distances among
nodes increase from 1 to the diameter of the graph.

Algorithm 1 Call Graph Distance Matrix

1: function Distance (Graph, matrix) :
2: for each row i column j in matrix do
3: matrix[i][j] = infinity
4: end for
5: distance = 1
6: for each edge e(i , j) in Graph do
7: matrix[i][j] = distance
8: matrix[j][i] = distance
9: end for

10: updated = true
11: while updated do
12: distance ++
13: updated = false
14: for each row i column j in matrix do
15: if matrix[i][j] == distance - 1 then
16: for each vertex k in Graph do
17: if k != i && matrix[j][k] ==

1&& matrix[i][k] > distance then
18: matrix[i][k] = distance
19: matrix[k][i] = distance
20: updated = true
21: end if
22: end for
23: end if
24: end for
25: end while
26: end function

The workflow is defined below:

When one iteration completes, each distance value is
greater than or equal to its previous value. Since each
���������������� � �� will be checked at most once, when

408

1. Set initial value of medoids, and randomly select k of
the n data points as the medoids.

2. Associate each data point to the closest medoid.
("closest" is defined using Euclidean distance)

3. For each medoid ��
For each non-medoid data point ��

Swap �� and �� and compute the total cost of
the configuration ���

4. Select the configuration with the lowest cost.
5. Repeat steps 2 to 4 until there is no change in the

medoid.

every node is visited, the time complexity in a worst case is
�������, which is more efficiency than the Dijkstra algorithm
whose time complexity is �������.
B. Scenario Clustering

Clustering is used to reduce scenario duplication. Suppose
defects are predicted directly after the call graph building
process, scenarios may share some common call paths. The
main idea of clustering is to group instances with similar
attributes by taking static classification of call paths. As a
result, the instances in each group have relatively high
similarity.

A commonly used clustering algorithm is k-means [28],
while it is not suitable for scenario clustering. If we use
functions of the call graph as the clustering objects, and define
the frequency of inter function calling as the object distance,
the k-means algorithm can satisfy the requirements for scenario
extraction. However, the centroids of the k-means can barely
be any of the input objects (i.e., functions). Thus it becomes
impossible to figure out the distance between objects and the
centroid.

In our study, we use a mutation of k-means, which is called
k-medoids [29], to solve the problem. In contrast to the k-
means algorithm, k-medoids additionally takes a medoid as an
object. Medoids are representative objects of a data set or a
cluster with a data set whose average dissimilarity to all the
objects in the cluster is minimal. Medoids are similar in its
concept to centroids, but they are always the members of the
data set. Commonly, the sum of distances between medoids
and the other objects in the cluster is the shortest. The most
common realization of k-medoid clustering is the Partitioning
Around Medoids (PAM) algorithm. The workflow is as follows:

The most time-consuming step of k-medoids is the third

step. The complexity of computing ��� is �� � . The
complexity of swapping step for each medoid �� and each
non-medoid data point �� is ��! 	�. Suppose the upper bound
of the iteration is t, the time complexity of k-medoids is
��!� 	� . To increase the computation efficiency, the third
step is taken in parallel in our study.

IV. COMPRESSED C4.5 MODELS
This section provides an overview of C4.5 models and

Spearman’s rank correlation coefficient, and then presents the
compressed C4.5 models in detail.

A. Preliminaries
C4.5 algorithm uses the concept of information entropy to

build a decision tree from a set of training data. The
Spearman’s rank correlation coefficient is introduced into the
new models so that the choosing of attribute as the root node
of the decision tree becomes much more in line.

1) The C4.5 Algorithm: Let " be a set with data samples,
" can be divided into # different classes $��� � %& '&(�(�(�& #� ,
and every class $� have � samples. The entropy of dividing "
into # classes is defined,

��"�) *+,���
	�,��
-

�.�
�����������������������%��

where ,� � /0
/ is the probability of a sample in S that belongs to

class $�. Entropy characterizes the purity of a sample set.
Let the set of all the different values of attribute A be 12,

and "3 be the subset of samples with value v on attribute A, that
is "3 �� � 45� 6 �"�7�5� �� �89. After an attribute A is chosen to
be the root of a sub-tree, the entropy of classifying "3 is
defined,

��"& 7�) + �"3�
�"�36:;

��"3�������������������������'�

where ��"3� is the entropy of dividing samples in set "3 into c
classes. The information gain of attribute A to the sample set S
is,

 <�� �"& 7�) ��"� * ��"& 7�����������������������=�
C4.5 uses the gain ratio as the basis of choosing attributes

as the root of a sub-tree when the decision tree is constructed.
The gain ratio is,

<�� >�����"& 7�) <�� �"& 7�
",���? @��"& 7��������������A�

Here split information is

",���? @��"& 7�) *+�"��
�"� ��
	

�"��
�"�

-

�.�
������������B�

where "� is c sample subsets by dividing S using c values of
attribute A. Split information is the entropy of S on all values of
attribute A.

2) Spearman’s Rank Correlation Coefficient: The
Spearman’s rank correlation coefficient is used to study the
relationships among variables and to quantify the degree of
correlation of two columns of Pearson correlation coefficients
among the ranked variables. It is calculated during the

409

construction of the decision tree by choosing an attribute with
values from all instances as 1�, letting defects number of every
instance be C�, and then converting the n raw scores 1�, C� to
ranks �� , D� .The Spearman correlation coefficient E is
computed:

E) F ��� * �G��D� * DH��
IF ��� * �G�	 F �D� * DH�	��

������������������J�

Tied values are assigned a rank equal to the average of their
positions in an ascending order. For example, the third and
fourth values are equal, and the corresponding rank is �K�	 �
=LB

B. C4.5 Model Improvement
In our previous study we have compared Bayes Network,

CART and C4.5 by analyzing their confusion matrix (when
instances are classified, a confusion matrix is be generated by
WEKA for every model), and found that C4.5 is the best.

However, the existing prediction models may not be precise
enough and an optimization of the decision tree algorithm is
anticipated. To achieve better accuracy, we attempt to improve
C4.5 in three directions [20].

1) Compressed C4.5 model I: The first model multiplies
the Spearman’s correlation coefficient and the gain ratio, and
then uses the product to replace the original gain ratio for
selecting test attributes. The Spearman’srank correlation
coefficient can be positive or negative.The gain ratio is
defined as

<>M�N%��"& 7�) <�� >�����"& 7� O E������������P�
We adopt multiplication instead of using addition,

according to the situation that both the gain ratio and the
Spearman’s rank correlation coefficient can represent the
relationships between the metrics and the defects, while the
weights of them are not clear.

2) Compressed C4.5 model II: In the second compressed
C4.5 model, the Spearman’s rank correlation coefficients are
sorted in an ascending order. Let the ranks of the coefficients
be >� !�E� . Compressed C4.5 model II uses >� !�E�
instead of E as the multiplier. This model ignores the value of
the Spearman’s rank correlation coefficient, but takes the
importance of every attribute into account.

The gain ratio for compressed C4.5 model II is defined as

<>M�N'��"& 7�) <�� >�����"& 7� O >� !��E��������Q�
3) Compressed C4.5 model III: The third model introduces

the Spearman’s rank correlation coefficient into the process of
calculating the gain ratio in order to balance the fluctuation of
gain ratio in different metrics. The main idea of the C4.5
algorithm is to choose the attribute with the biggest information
gain (in C4.5, we choose the root node on the basis of the gain
ratio which is calculated by dividing information gain by using
the split information, while the split information is introduced
only to solve the multi-valued bias problem in ID3 [21], the
ancestor of C4.5.) as the root node of a sub-tree in which the
information gain is the compression of the entropy expectation

caused by assigning the value of attribute A. Along with the
information gain, we adopt Spearman’s rank correlation
coefficient as the basis. The first step of using the compressed
C4.5 model III is to reduce the importance of information gain.
Therefore, we re-define E(S,A), and the entropy of classifying
"3 by attribute A is,

�R�"& 7�) + S"3"
 ET��"3�
36:;

�������������������U�

Since the split information is used to reduce the influence
of the multi-valued bias problem, we keep it in the second step,
but let it be significant when calculating gain ratio. Split
information in formula (5) is re-defined,

",���? @�R�"& 7�) *+��"���"�
 E���
	
�"��
�"�

-

�.�
����������%V�

The modified gain ratio is calculated by using the formula

<>M�N=�"& 7�) <�� W�"& 7�
",���? @�W�"& 7� �

��"� * �W�"& 7�
",���? @�W�"& 7���%%�

V. EXPERIMENTAL STUDY
We have performed an experiment to evaluate the

effectiveness of scenario-based defect prediction approach on
improved C4.5 models. Next describes the detailed setup,
including the defect prediction process, the subject systems,
the metrics (features) and evaluation measures.

A. Defect Prediction Process
To evaluate our approach, we have compared our approach

with the file-based prediction approach.
The predict process is divided into three steps: mining

metrics from a software repository including source code
metrics, change metrics and defect history metrics; inputting
the formatted metrics into the improved C4.5 models and
outputting prediction accuracy, verifying the effectiveness of
the scenario-based approach by comparing it with the file-
based approach.

Fig.1. describes the workflow of experiment, where
DeriveScenario tool is implemented by the authors to extract
functional scenarios; Understand tool2 is used to extract the
source code metrics from source codes and extracted scenarios;
FilterMetrics tool, LinkBugs tool and GenerateWekaData tool
are developed by the authors to filter metrics from Understand
and to mine change metrics and defect metrics and format
metrics according to ARFF3 format respectively.

Along with the scenario-based approach through
DeriveScenario tool, we have extracted file-level metrics to
build file-based defect prediction approach. For each approach,
the output defect density is examined and the classification
accuracy of training data set and testing data set is recorded.

2 http://www.scitools.com/index.php
3 An ARFF (Attribute-Relation File Format) file is an ASCII text file that
describes a list of instances sharing a set of attributes.
http://www.cs.waikato.ac.nz/~ml /weka/arff.html

410

Fig. 1. Defect Prediction Process

We have further compared the sizes of the decision trees.
The inputs of the improved C4.5 models include source code
metrics along with the change metric and defect history metric.
The output is a classification of the source code files into ten
levels by their defects number. In the experiment, WEKA4 was
used to predict defects.

B. Data
We perform our experiments on the Eclipse platform 5 .

Eclipse is a popular open source system that has been
extensively studied before. In the experiment, we focused on
the metrics on the org.eclipse.jdt.core component.

Table I shows an overview of the org.eclipse.jdt.core
versions used in this study. We downloaded the repository
from CVS6 and the bug reports from Bugzilla7. The versions
lasted from June 27, 2002 to September 9, 2011.

C. Metrics
1) Source Code Metrics: We have used two different levels

of source-code metrics. Each version downloaded from CVS
was preprocessed and only files with defect history in Bugzilla
were left and tracked. After that, Understand tool was used to
extract source code metrics.

Table II lists the metrics used for file-based defect predictor.
Table III lists the function-level metrics that can be used to
extract scenario-based source code metrics. We re-organize
them according to scenarios before data generation.

2) Change & History Metrics: We only use one change
metric, i.e., Number of Revisions (NR). The NR metric
represents the number of revisions of a given Java class during
the development of the investigated releases of a software
system.

D. Evaluation Measures
The performance measures used for the scenario-based

defect predictor and file-based defect predictor are summarized
below.

4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://www.eclipse.org
6 http://archive.eclipse.org/arch/
7 https://bugs.eclipse.org/bugs/

TABLE I. VERSIONS OF ECLIPSE JDT MODULE

No Version Release Date No Version Released Date
1 2.0.0 Jun 27, 2002 16 3.2.2 Feb 12, 2007

2 2.0.1 Aug 29, 2002 17 3.3.0 Jun 21, 2007

3 2.0.2 Nov 7, 2002 18 3.3.1 Sep 21, 2007

4 2.1.0 Mar 27, 2003 19 3.3.2 Feb 21, 2008

5 2.1.1 Jun 27, 2003 20 3.4.0 Jun 13, 2008

6 2.1.2 Nov 3, 2003 21 3.4.1 Sep 11, 2008

7 2.1.3 Mar 10, 2004 22 3.4.2 Feb 11, 2009

8 3.0.0 Jun 25, 2004 23 3.5.0 May 27, 2009

9 3.0.1 Sep 26, 2004 24 3.5.1 Sep 17, 2009

10 3.0.2 Mar 11, 2005 25 3.5.2 Feb 11, 2010

11 3.1.0 Jun 27, 2005 26 3.6.0 Jun 3, 2010

12 3.1.2 Sep 29, 2005 27 3.6.1 Sep 9, 2010

13 3.1.2 Jan 18, 2006 28 3.6.2 Feb 10, 2011

14 3.2.0 Jun 6, 2006 29 3.7.0 June 13, 2011

15 3.2.1 Sep 21, 2006 30 3.7.1 Sep 9, 2011

• Accuracy. Accuracy measures the percentage of

correctly classified instances of both the defective (true)
and non-defective (false) classes.

• Decision tree size. The size of a generated decision tree
represented by a leaf node number and non-leaf node
number is the key factor that determines the running
time of classifying defects and therefore reflects the
efficiency of the models.

E. Result and Analysis
Next presents the detailed experimental results for

comparisons of file-based and scenario-based with and without
defect-free functions.

1) With Defect-free Functions: In the experiments, 10 runs
of 10-fold cross validation were performed when we trained
the classification models on the fit data set.

Understand
Metrics Software

Repository

Defect
Density Improved

C4.5 models

Source code
Metrics

ARFF files

Understand

FilterMetrics

Generate Weka
Data

Functional
Scenarios

DeriveScenario

Understand

input output

Change
&History
Metrics

LinkBugs

411

TABLE II. FILE-LEVEL METRICS OF UNDERSTAND

Understand Metrics Source Code Metrics
SumCyclomatic WMC

MaxInheritanceTree DIT

PercentLackOfCohesion LCOM

CountOuput FanOut

CountLineCode LOC

CountInput FanIn

CountDeclMethodAll RFC

CountClassDerived NOC

CountClassCoupled CBO

CountDeclClassMethod NOM

CountDeclClassVariable NOA

TABLE III. FUNCTION-LEVEL METRICS OF UNDERSTAND

Understand Metrics Source Code Metrics
Cyclomatic WMC

Essential ESS

MaxNesting MN

CountOuput FanOut

CountLineCode LOC

CountInput FanIn

CountPath CP

RatioCommentToCode RCC

TABLE IV. COMPARISON OF FILE-BASED AND SCENARIO-BASED
APPROACH ON ACCURACY AND DECISION-TREE SIZE (WITH DEFECT-FREE

FUNCTIONS)

 File-based Scenario-based
Training set true 61076 93.0923% 61462 93.6806%

false 4532 6.9077% 4146 6.3194%

Testing set true 60925 92.8622% 60787 92.6518%

false 4683 7.1378% 4821 7.3482%

non-leaves 103 629

leaves 52 315

Table IV compares the accuracy and decision-tree size

between the file- and scenario-based approaches. As shown in
table IV, the accuracy indicates that there exists no apparent
difference. Even more, file-based approach (92.8622%) was
better than scenario-based approach (92.6518%) on testing set.
The result is not satisfactory with the decision-tree size of
scenario-based approach 6 times larger than the file-based
approach.

TABLE V. COMPARISON OF FILE-BASED AND SCENARIO-BASED
APPROACH ON ACCURACY AND DECISION-TREE SIZE (WITHOUT DEFECT-FREE

FUNCTIONS)

 File-based Scenario-based
Training set true 2999 64.5919% 3392 73.0877%

false 1644 35.4081% 1249 26.9123%

Testing set true 1596 34.3743% 1710 36.8455%

false 3047 65.6257% 2931 63.1545%

non-leaves 1329 629

leaves 665 315

To find out the reason, we have taken a deep investigation

about the confusion matrix built in WEKA (when instances
were classified, a confusion matrix was generated by WEKA
for every model). Table VI shows the confusion matrix of file-
based and scenario-based approach (with defect-free functions).
In the matrix, instances were classified into ten levels by their
defect number and most instances are grouped into the first
level a. Take the first row of the training set in file-based
approach as an example. 60939 of 60965 instances are of level
a. In fact, most instances were defect-free (92.88% in file-
based approach while 92.85% in scenario-approach). This
draws a conclusion that “an overly centralized data
distribution will affect the eventual learning result and lead to
bad defect prediction performance”.

2) Without Defect-free Functions: In order to reduce the
impact of the centralized data distribution, we have removed
all the instances in level a and build the defect prediction
model again. We have pruned the defect-free instances and
only worked on the instances with one or more defects. The
results are listed in table V and tableVII.

During the removing phase, data in confusion matrix is
evenly-distributed in table VII. In Table V we compare the
results of the scenario-based approach with the ones of file-
based approach for accuracy and decision-tree size. The
predictive accuracy of scenario-based approach is 73.0877% in
training set and 36.8455% in testing set. Although the accuracy
decreases for both approaches since the defect-free instances
are pruned, our scenario-based shows better performance.

In summary, the accuracy of scenario-based defect
prediction is higher than that of the file-based defect prediction.
The scenario-based approach increases the accuracy by 8.5% in
the training set and 2.5% in the testing set. For running time,
the scenario-based approach offers better result, which reduces
the decision tree size by 52.65% on average with leave nodes
and non-leave nodes of size 315 and 629.

F. Summary and Threats to Validity
Our evaluation shows that scenario-based defect prediction

on improved C4.5 model offers high performance. If the
defect-free instances are removed, the scenario-based approach
outperforms file-based approach in its accuracy and running
time.

The threats to the validity are as follows. The threat to
internal validity lies in the implementation of the experimental
study. To reduce this threat, the authors of this paper reviewed
and tested the code.

412

TABLE VI. CONFUSION MATRIX OF FILE-BASED AND SCENARIO-BASED
APPROACH (WITH DEFECT-FREE FUNCTIONS)

 Level
a b c d e f g h i j

fil
e

T
ra

in
in

g
se

t

a 60939 3 3 0 0 0 0 0 0 20

b 1820 20 4 0 0 0 0 1 0 9

c 844 3 15 0 0 0 0 1 0 12

d 443 4 0 1 0 1 0 0 0 6

e 380 2 1 0 3 1 0 0 0 6

f 160 2 0 0 0 4 0 0 0 5

g 170 1 1 1 0 0 0 0 0 6

h 106 1 2 0 0 0 0 4 0 4

i 86 0 0 0 0 0 0 1 5 4

j 409 1 1 0 1 2 0 1 3 85

T
es

tin
g

se
t

a 60824 60 30 7 6 2 1 2 3 30

b 1793 20 10 6 2 1 1 1 0 20

c 834 15 5 3 1 2 0 2 0 13

d 424 7 6 2 0 3 1 1 1 10

e 372 9 1 2 1 2 0 0 1 5

f 150 5 3 0 2 0 0 0 2 9

g 167 2 0 1 0 0 0 2 0 7

h 99 6 3 0 1 0 1 0 1 6

i 79 4 1 0 0 2 0 0 1 9

j 386 17 7 4 4 8 1 1 3 72

sc
en

ar
io

T
ra

in
in

g
se

t

a 60918 12 8 10 2 1 0 0 0 16
b 1800 161 4 4 1 1 1 0 3 12

c 780 8 75 3 1 0 1 0 1 10

d 393 10 3 67 1 0 0 0 0 6

e 249 15 9 4 22 0 0 0 1 6

f 120 6 3 3 2 9 1 0 3 5

g 113 8 4 6 0 0 15 0 0 7

h 70 4 6 2 1 2 0 6 0 9

i 63 3 6 0 3 1 1 1 13 2

j 269 17 9 9 5 1 1 2 2 176

T
es

tin
g

se
t

a 60645 112 61 41 13 9 9 7 9 61
b 1837 48 24 13 10 6 3 2 4 40

c 783 26 18 6 9 2 4 3 2 26

d 414 17 11 5 5 3 0 2 1 22

e 254 19 8 7 1 0 3 1 0 13

f 122 13 4 6 0 0 1 1 1 4

g 120 10 8 5 0 1 1 0 2 6

h 76 5 3 2 1 0 0 1 1 11

i 66 5 6 2 1 1 1 1 0 10

j 317 43 16 14 9 4 5 7 8 68

The threat to external validity is from the objective
programs used in the experiment. To reduce the threat, we have

studied 30 versions to avoid bias. Moreover, the module we
choose has been widely used in software testing and defect
prediction approach.

The second external validity lies in the influence of defect-
free functions. It is obvious that more experimentation is
required, to generalize out results and help us take a further
investigation of the modules with defect-free instances that
have no obvious improvement when the scenario-based
approach is adopted.

The third external threat is induced by our choice to use
compressed C4.5 models. To reduce the threat, our previous
work has concluded that C4.5 is best. Besides, our
experimental results are measured by both accuracy and the
decision tree size, which has been widely used in the
evaluation of the prediction approaches.

The threat to conclusion validity concerns issues that affect
the ability of drawing a correct conclusion from the analysis of
the gathered data. We chose a set of statistical tests to ensure
that our observations do not occur by chance.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a scenario-based approach

to defect prediction using compressed C4.5 model. The
approach applies a 2-dimension distance matrix and derives
scenarios with a time complexity of �������, and adopts the k-
medoids clustering algorithm to group scenarios. After building
models through our improved C4.5 models, we have performed
a case study on eclipse JDT components. In the experiment, we
conclude that:

• With defect-free functions, the prediction accuracies of
the scenario-based approach and the file-based
approach are close to each other. The scenario-based
approach is 0.5883% higher than the file-based
approach in the training set and 0.2104% lower than
the file-based approach in the testing set.

• Without defect-free functions, scenario-based defect
prediction approach offers high performance. The
scenario-based approach improves the prediction
accuracy by 8.5% on the training set and 2.5% on the
testing set.

• Without defect-free functions, the scenario-based
approach reduces the size of the decision tree by 52.65%
on average. The number of the leave nodes and non-
leave nodes are 315 and 629.

One disadvantage of our experiment is the choosing of
modules. The module studied in this paper has few defects and
the distribution of defects tends to be one or two defects in one
file. This generates a little interference to the comparison of the
scenario-based defect prediction approach and the file-based
approach. In the future we will apply the scenario-based
approach to more open source software to overcome the
problem of few defects in a file. Apart from that, the study
result shows that the scenario-based approach performs well
only when the defect-free function instances have been
removed. We will also focus on analyzing and reducing the
impact of defect-free functions by using other projects.

Although C4.5 is concluded to be best, further work should
be conducted to compare our work with the scenario-based
approach using other models.

413

TABLE VII. CONFUSION MATRIX OF FILE-BASED AND SCENARIO-BASED
APPROACH (WITHOUT DEFECT-FREE FUNCTIONS)

 Level
a b c d e f g h i j

fil
e

T
ra

in
in

g
se

t

a 0 0 0 0 0 0 0 0 0 0

b 0 1651 84 27 40 5 5 10 2 30

c 0 320 474 26 8 6 3 5 3 30

d 0 166 57 202 7 4 2 1 2 14

e 0 137 28 28 174 5 1 1 1 18

f 0 53 20 12 9 60 0 0 2 15

g 0 61 25 15 7 7 49 3 1 11

h 0 34 12 6 7 1 2 42 3 10

i 0 25 4 8 3 3 3 2 34 14

j 0 105 24 21 14 9 5 8 4 313

T
es

tin
g

se
t

a 0 0 0 0 0 0 0 0 0 0

b 0 1143 298 120 96 32 25 28 14 98

c 0 463 180 71 32 19 8 16 12 74

d 0 238 93 33 30 7 7 10 1 36

e 0 207 49 28 59 7 7 1 5 30

f 0 83 29 12 9 7 4 3 1 23

g 0 80 25 16 14 11 13 2 3 15

h 0 42 14 9 6 1 3 16 4 22

i 0 34 22 7 2 1 3 3 3 21

j 0 164 78 37 26 23 11 12 10 142

sc
en

ar
io

T
ra

in
in

g
se

t

a 0 0 0 0 0 0 0 0 0 0

b 0 1839 57 27 14 6 10 3 6 25

c 0 251 553 16 12 2 8 1 2 34

d 0 105 40 302 6 1 4 4 2 16

e 0 72 32 20 163 4 2 1 1 11

f 0 47 15 16 5 50 3 2 3 11

g 0 42 17 8 4 4 66 2 0 10

h 0 20 12 10 9 4 1 30 0 14

i 0 20 12 6 8 1 2 2 34 8

j 0 49 24 23 12 9 7 6 6 355

T
es

tin
g

se
t

a 0 0 0 0 0 0 0 0 0 0

b 0 1259 317 120 89 38 34 9 21 100

c 0 433 189 92 47 13 19 11 6 69

d 0 202 88 87 23 14 14 10 8 34

e 0 157 54 28 17 2 8 4 8 28

f 0 62 32 13 7 4 6 2 5 21

g 0 65 28 14 9 3 0 5 4 25

h 0 33 15 9 9 6 5 5 0 18
i 0 34 16 11 8 2 1 1 2 18

j 0 142 70 37 38 17 15 15 10 147

ACKNOWLEDGMENT
Beijun Shen is the corresponding author. This research is

supported by Science Innovation Project of Shanghai
Municipal Commission of Science and Technology (No.
12dz1506900), National Science and Technology Major
Project of Science and Technology of China (No.
2012zx03006-002) and National Natural Science Foundation of
China (Grant No. 91118004, 61100051).

REFERENCES
[1] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and

comprehensive investigation of methods to build and evaluate fault
prediction models,” J. Syst. Softw., vol. 83, no. 1, 2010, pp.2–17.

[2] T. Jiang, T. Lin, and K. Sunghun, “Personalized defect prediction,” 2013
IEEE/ACM 28th International Conference on Automated Software
Engineering (ASE). IEEE, 2013, pp.279-289.

[3] B. Caglayan, A. T. Misirli, G. Calikli, A. Bener, T. Aytac and B. Turhan,
“Dione: an integrated measurement and defect prediction solution,”
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 2012, pp.20-23.

[4] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proc. of 2006 Int'l Conference on Software
Engineering (ICSE 2006), Shanghai, China, 2006, pp.452-461.

[5] M. Li, H. Zhang, R. Wu, and Z.H. Zhou, “Sample-based software defect
prediction with active and semi-supervised learning,” 2012 IEEE/ACM
27th International Conference on Automated Software Engineering
(ASE). IEEE, 2012, pp.201-230.

[6] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, 1994, pp. 476–493.

[7] A. Schr¨oter, T. Zimmermann, and A. Zeller, “Predicting component
failures at design time,” in Proceedings of the International Symposium
on Empirical Software Engineering. ACM, 2006, pp. 18–27.

[8] N. Nagappan, B. Murphy, and V. Basili, “The Influence of
Organizational Structure on Software Quality: An Empirical Case Study,”
Proc. of 2008 Int'l Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, 2008, pp. 521-530.

[9] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting Fault
Incidence Using Software Change History,” IEEE Transactions on
Software Engineering, vol. 26, 2000, pp. 653-661.

[10] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the Bugs Are,” in
International Symposium on Software Testing and Analysis (ISSTA),
2004, pp. 86-96.

[11] R. Moser,W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction,” Proc. of 2008 Int'l Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, 2008, pp.181-190.

[12] S. Kim, T. Zimmermann, E. Whitehead Jr, and A. Zeller, “Predicting
Faults from Cached History,” Proc. of 2007 Int'l Conference on
Software Engineering (ICSE 2007), 2007, pp.489-498.

[13] N. Nagappan,and B. Thomas, “Using software dependencies and churn
metrics to predict field failures: An empirical case study,” Empirical
Software Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on. IEEE, 2007, pp.364-373.

[14] K. Herzig, S. Just, A. Rau and A. Zeller, “Predicting defects using
change genealogies,” 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE), IEEE, 2013, pp.118-127.

[15] S. Shivaji, E. J. W. Jr., R. Akella, and S. Kim, “Reducing features to
improve bug prediction,” In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2009, pp. 600-
604.

[16] A. E. Hassan, “Predicting faults using the complexity of code changes,”
Proc. of 2009 Int'l Conference on Software Engineering (ICSE 2009),
Vancouver, Canada, 2009, pp. 78–88.

[17] H. Kagdi, “Improving change prediction with fine-grained source code
mining,” In Proceedings of the twenty-second IEEE/ACM international

414

conference on Automated software engineering. ACM, 2007, pp.559-
562.

[18] B. G. Ryder, “Constructing the call graph of a program,” IEEE
Transactions on Software Engineering, vol. 3, 1979, pp. 216-226.

[19] M. Chen, R. A. Chowdhury, V. Ramachandran, “Priority queues and
dijkstra's algorithm,” Technical report, UTCS Technical Report TR-07-
54, 2007.

[20] J. Wang, S. Beijun, and C. Yuting, “Compressed C4. 5 Models for
Software Defect Prediction,” 2012 12th International Conference on
Quality Software (QSIC), IEEE, 2012, pp. 13-16.

[21] J. R. Quinlan, “Induction of decision trees,” Machine learning, Vol.
1 ,1986, pp. 81-106.

[22] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the bunch tool,” IEEE Trans. on Softw. Eng., vol.
32, 2006, pp. 193–208.

[23] D. Doval, S. Mancoridis, and B. S. Mitchell, “Automatic clustering of
software systems using a genetic algorithm,” in Proceedings of the
Software Technology and Engineering Practice. IEEE Computer Society,
1999, pp. 73–82.

[24] A. E. Wu, J. Hassan and R. C. Holt, “Comparison of clustering
algotithms in the context of software evolution,” in Proceedings of the
International Conference on Software Maintenance. IEEE Computer
Society, 2005, pp. 525–535.

[25] R. A. Bittencourt and D. D. S. Guerrero, “Comparison of graph
clustering algorithms for recovering software architecture module views,”
in Proceedings of the European Conference on Software Maintenance
and Reengineering. IEEE Computer Society, 2009, pp. 251–254.

[26] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect densities
insource code files with decision tree learners,” in Proceedings of the
2006 international workshop on Mining software repositories (MSR),
New York, NY, USA: ACM, 2006, pp. 119 125. [Online]. Available:
http://doi.acm.org/10.1145/1137983.1138012.

[27] J. R. Quinlan, “C4. 5: programs for machine learning,” Vol. 1. Morgan
kaufmann, 1993.

[28] J. A. Hartigan, and A. W. Manchek, “Algorithm AS 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series C
(Applied Statistics) 28.1 (1979), pp. 100-108.

[29] L. Kaufman, and P. J. Rousseeuw, “Clustering by means of medoids,”
(1987). In Dodge Y, editor. Statistical data analysis based on the L1
norm and related methods. Amsterdam: North Holland/Elsevier. pp.
405-416.

[30] M. Yin, B. Li, and C. Tao, “Using cognitive easiness metric for program
comprehension,” Software Engineering and Data Mining (SEDM), 2010
2nd International Conference on. IEEE, 2010, pp. 134-139.

[31] Y. Peng, G. Kou, G. Wang, W. Wu, Y. Shi, “Ensemble of software
defect predictors: an AHP-based evaluation method,” International
Journal of Information Technology & Decision Making, 2011, pp. 187-
206.

[32] S. Wang and X. Yao, “Using Class Imbalance Learning for Software
Defect Prediction,” IEEE Transactions on Reliability, 2012
(DOI:10.1109/TR.2013.2259203).

[33] Y. Peng, G. Wang, and H. Wang, “User preferences based software
defect detection algorithms selection using MCDM,” Information
Sciences 191, 2012, pp. 3-13.

[34] J. R. Quinlan, “Improved use of continuous attributes in C4.5,” arXiv
preprint cs/9603103 (1996).

[35] S. Ruggieri, “Efficient C4.5 [classification algorithm],” IEEE
Transactions on Knowledge and Data Engineering,Vol. 14, no. 2, 2002,
pp. 438-444.

[36] Z. H. Zhou and Y. Jiang, “NeC4.5: neural ensemble based C4.5,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 16, 2004, pp.
770-773.

[37] M. Baglioni, Miriam, B. Furletti, and F. Turini, “DrC4.5: Improving
C4.5 by means of prior knowledge,” Proceedings of the 2005 ACM
symposium on Applied computing. ACM, 2005, pp. 474-481.

[38] Z. P. Fry,and W. Westley, “Clustering static analysis defect reports to
reduce maintenance costs,” Reverse Engineering (WCRE), 2013 20th
Working Conference on. IEEE, 2013, pp. 282-291.

[39] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level fault
prediction using software clustering,” 2013 IEEE/ACM 28th
International Conference on Automated Software Engineering (ASE),
IEEE, 2013, pp. 640-645.

[40] D. Thakur, N. Markandaiah, D.S. Raj, “Re-optimization of ID3 and C4.5
decision tree,” Computer and Communication Technology (ICCCT),
2010, pp. 448- 450.

[41] T. Zimmermann, and N. Nagappan, “Predicting subsystem failures using
dependency graph complexities,” 18th IEEE International Symposium
on Software Reliability Engineering, 2007, p. 227-236.

[42] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-
grained module histories,” Proc. of Int’l Conf. on Software Engineering
(ICSE2012), Zurich, Switzerland, 2012, pp. 200-210.

415

