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Abstract—Defect prediction approaches use software metrics and 
fault data to learn which software properties are associated with 
what kinds of software faults in programs. One trend of existing 
techniques is to predict the software defects in a program 
construct (file, class, method, and so on) rather than in a specific 
function scenario, while the latter is important for assessing 
software quality and tracking the defects in software 
functionalities. However, it still remains a challenge in that how a 
functional scenario is derived and how a defect prediction 
technique should be applied to a scenario. In this paper, we 
propose a scenario-based approach to defect prediction using 
compressed C4.5 model. The essential idea of this approach is to 
use a k-medoids algorithm to cluster functions followed by 
deriving functional scenarios, and then to use the C4.5 model to 
predict the fault in the scenarios. We have also conducted an 
experiment to evaluate the scenario-based approach and 
compared it with a file-based prediction approach. The 
experimental results show that the scenario-based approach 
provides with high performance by reducing the size of the 
decision tree by 52.65% on average and also slightly increasing 
the accuracy. 

Keywords-Defect Prediction; Scenario; Software Clustering; 
C4.5 Model 

I. INTRODUCTION  
Defect prediction has been widely used in industry to 

predict the amount and the kinds of software defects in a 
system [1-5]. It can be used to identify the modules that are 
most likely to contain defects prior to testing. A number of 
defect prediction techniques and prediction models have been 
proposed to predict defects in large-scale software systems, 
which can be divided into two respects: metric-based and 
historical data-based. The former refers to an idea of predicting 
of defects on the basis of the software and its structure, size, 
coding style, etc. [6-8], and the latter refers to the idea of 
predicting of defects by mining the code repositories, analyzing 
the source code changes, and learning from the previous 
software defects [9-14]. 

However, many existing techniques tend to predict the 
defects in some program constructs (file, class, method, and so 
on) rather than in some specific function scenarios, while the 
latter is important and necessary for assessing the software 
quality and tracking the defects in software functionalities [7, 
15, 16]. It needs to perform defect prediction at the scenario 
level, which is motivated by two examples: 

• When a program is suspected to contain some software 
defects, an engineer usually reveals and recovers the 
defects in the program by diagnosing the software 
functions or scenarios and locating the defects inside. 

• A modification of a program may several methods be 
changed. When a defect is hidden in a change, a 
programmer has to go through the software functions 
and scenarios instead of inspecting the modified code 
line by line.  

It still remains a challenge in that how a defect is located 
and fixed in some software function or scenario, although some 
previous researches have shown that a fine-grained defect 
prediction can result in an overall improved expressiveness 
(i.e., granularity and context given to a developer) and 
effectiveness (i.e., accuracy of the prediction) [17]. One main 
difficulty for this is to derive a functional scenario and apply a 
defect prediction technique to a scenario. For example, when a 
functional scenario is defined by chaining all the functions 
called, it is not easy to predict the defects on the basis of the 
state of the function call stack, and it is also not easy to locate 
the actual defect when a failure is caused by the top function in 
the stack.  

In this paper, we propose a scenario-based approach to 
defect prediction using compressed C4.5 model. In the study, 
we use a k-medoids algorithm to cluster functions followed by 
deriving functional scenarios, and then apply the C4.5 model to 
predict the fault in the scenarios. A two-dimension distance 
matrix is used in construction of the call graph, which reduces 
the computational complexity to ������� . Compressed C4.5 
model is used to improve the defect prediction accuracy during 
the model learning phase. C4.5 algorithm is an algorithm 
developed by Quinlan, which builds a decision tree from a set 
of training data by using the concept of information entropy 
[27]. The Spearman’s rank correlation coefficient is introduced 
into the new model so that the choosing of attribute as the root 
node of the decision tree becomes linear. 

The main contributions of this paper are summarized as 
follows: 

• Approach. We propose a scenario-based approach to 
deriving functional scenarios from programs, and to 
defect prediction based on compressed C4.5 model.  

• Experiment. We have conducted an experiment to 
evaluate the scenario-based approach and compared it 
with a file-based prediction approach. The 
experimental results show that the scenario-based 
approach provides with high performance by reducing 
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the size of the decision tree by 52.65% on average and 
also slightly increasing the accuracy. 

The outline of this paper is organized as follows: Section II 
presents the related work. Section III introduces a scenario-
based approach, which is used to extract the functional 
scenarios by using a clustering algorithm. Section IV 
introduces the compressed C4.5 models. Section V presents an 
experiment for assessing the effectiveness of the defect 
prediction approach, and then makes a discussion. Section VI 
draws the conclusions and points out the future work. 

II. RELATED WORK 
This section presents the background knowledge about 

defect prediction and introduces the related work about graph 
mining and program clustering in source code and the 
researches in C4.5 models. 

A. Defect Prediction 
Software defect prediction is an effective way to optimize 

the allocation of testing resources and improve software quality. 
It can be used to identify modules that are most likely to 
contain defects prior to the testing phase. In the past decades, 
various methodologies have been proposed and validated to be 
effective in predicting software defects. Many researchers have 
designed new defect prediction algorithms and/or new metrics 
for predicting software defects, most of which are used to 
predict defects through machine learning approaches. Here we 
focus on data prediction at various levels, such as at the 
components, files, and methods levels. 

Many researches have been conducted to predict defects on 
coarse-grained level [7, 13, 41]. Zimmermann and Nagappan 
[41] have predicted defects based on code dependencies. They 
build dependency graphs and extract metrics using network 
measures. Further work has been done to leverage the 
architectural dependencies and churn measures [13]. New 
metrics have been defined and evaluated on Windows Server 
2003. 

Schröter et al. [7] have used relationships between 
components. Their aim was to help designers explore and 
assess design alternatives in terms of predicted quality easily. 
The study was conducted on 52 Eclipse plug-ins, and the 
results indicated that the software design, as well as the past 
failure history, can be successfully used in defect prediction. 
The models require relationships between components and this 
information is typically defined at the design phase, helping 
identify the failure-prone components as early as possible. 

Defect prediction at the coarse-grained level can offer 
satisfactory prediction performance, while fine-grained 
prediction approaches can be more helpful in finding bugs. 
Hata et al. [42] have developed a fine-grained version control 
system for quality assurance. The experimental results showed 
defect prediction model at the method level is more effective 
than those at the package or file levels. Their work indicates 
that prediction accuracy is sacrificed for bug finding and 
should be solved in future work, which motivates our study. 

In our work, we focus on functional scenarios. Nagappan et 
al. [4] have verified that function call related metrics can be 
used to predict the likelihood of defects accurately. In our study 
we propose a methodology about how the functional scenario 

is derived and clustered in order to increase accuracy at fine-
grained level. 

B. Graph Mining and Program Clustering in Source Code 
Graph mining and program clustering has been widely used 

in analyzing software source code. Mitchell and Mancoridis 
[22] have presented and analyzed a clustering system, named 
Bunch. To produce a decomposition of a system in subsystems, 
Bunch uses searching techniques to partition a graphical 
representation of the program which represents software 
entities and their relations. Doval et al. [23] have proposed a 
structural approach to grouping software entities into clusters 
on the basis of the genetic algorithms. Similar to [22], the 
quality of clustering depends on the definition of fitness 
functions and searching algorithms. 

Clustering algorithms based on structural information in 
source code have already been successfully used in the analysis 
of the software architecture evolution [24, 25]. For example, 
Wu et al. [24] have presented a comparative study of a number 
of clustering algorithms (e.g., an agglomerative clustering 
algorithm based on the Jaccard coefficient and the complete 
linkage update rule which uses 0.75 and 0.90 as the cutting 
points). To partition a software system into some meaningful 
subsystems, all algorithms need to be manually configured 
(e.g., the specification of cutting points and fitness functions). 

Similarly, Bittencourt et al. [25] have presented an 
empirical study to evaluate four widely known clustering 
algorithms on a number of software systems implemented in 
Java and C/C++. The algorithms include edge betweenness 
clustering, k-means clustering, modularization quality 
clustering, and design structure matrix clustering. 

One application for clustering algorithm is to debug defect 
prediction [38, 39]. Fry et al. [38] have adopted a clustering 
algorithm to leverage both syntactic and structural information 
available in static bug reports to accurately cluster the related 
reports, thus expediting the maintenance process. Scanniello et 
al. [39] have proposed fault prediction at the class level by 
using the BorderFlow clustering algorithm.  

The scenario extraction approach we adopt in this study is 
based on call graph mining and k-medoids clustering algorithm. 
The function call graph is taken as one of the graph mining 
algorithm and has been adopted for defect prediction [30]. 
However, the scenario-based approach is different from the 
previous researches, since it combines function call with the 
clustering algorithm and is used to predict defects at a fine-
grained level. 

C. C4.5 Decision Tree 
Decision tree learners have been applied to defect 

prediction but been proved not precise enough. Knab et al. [26] 
has adopted decision tree learners to predict defects on the 
basis of source code metrics, modification report metrics and 
defect report metrics, and they have achieved 62 percentages 
on prediction accuracy but wrongly classified nearly 40 percent 
of instances.  

C4.5 is a decision tree algorithm that constructs decision 
trees in a top–down recursive divide-and-conquer manner [27]. 
C4.5 algorithm has been effectively applied to defect prediction 
[31-33].  

Existing techniques have improved C4.5 in different ways 
[34-37, 40]. Quinlan [34] has shown the weakness of C4.5 with 
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1. Set the initial values in the distance matrix as positive 
infinity.  

2. For each edge(i,j) in Graph, set the distance value 
(matrix[i][j] and matrix[j][i] ) as weight 1. 

3. Let distance++.  For each value in the matrix, if the 
value matrix[i][j] is (distance-1), there exists a call 
relationship between i and j. Set the edge value as 
distance. 

4. Repeat step 3 until there is no change in the distance 
value. 

continuous attributes and applied an MDL-inspired penalty to 
decrease the tree size and increase the predictive accuracy. 
Ruggieri [35] has proposed an efficient version of the 
algorithm, called EC4.5. It improves C4.5 by adopting the best 
among three strategies for computing a information gain of 
continuous attributes. Zhou et al. [36] have combined neural 
network with C4.5 algorithm. The algorithm trains a neural 
network ensemble, and then employs the trained ensemble to 
generate a new training set through replacing the desired class 
labels of the original training examples with those outputs from 
the trained ensemble. Baglioni et al. [37] have improved C4.5 
by means of prior knowledge. The adaption considers other 
knowledge in real application (e.g. owned by experts of the 
field) that can be used in conjunction with the one hidden 
inside the examples. Thakuret et al. [40] have re-optimized ID3 
and C4.5 decision tree algorithm by providing a simple 
modification to the attribute selection methods. The 
optimization modifies the SplitInfo calculation in C4.5 and gets 
a decision tree with high classification accuracy.  

In this study, the Spearman’s rank correlation coefficient is 
introduced into the new models so that the choosing of attribute 
as the root node of the decision tree becomes much more in 
line. 

III. A SCENARIO-BASED APPROACH 
Next provides the details about the scenario-based approach. 

The approach consists of two steps: 
1) Call Graph Distance Matrix Algorithm. Functional 

scenarios are extracted statically from the source code. The 
codes will be represented as a call graph, where the nodes are 
the functions and the edges are the call relationships among 
the functions. A 2-dimension matrix is adopted to represent 
the distances among the nodes in the call graph.  

2) Scenario Clustering. Based on the graph representation, 
scenarios are grouped into clusters using k-medoids algorithm. 

A. Call Graph Distance Matrix Algorithm 
A scenario is defined on the basis of function calls. The 

first step of scenario deriving is to build a call graph. A call 
graph is a directed graph that represents the function calling 
relationship among subroutines in a program [18]. 

The distance between two nodes in a call graph is defined 
as the shortest distance between the two nodes. One classical 
algorithm for shortest distance is the Dijkstra Algorithm1. 

Let a graph contain ���  nodes and ���  edges. The time 
complexity of Dijkstra algorithm is �����	�. If a min-priority 
queue (i.e. the Fibonacci Heap) is used, the time complexity 
can be reduced to ����� 
 �����
���� [19].  

A 2-dimension matrix can also be used to represent the 
distances among the nodes in the call graph. When the 2-
dimension matrix is used, the shortest distance will be 
computed for �	 ����	� times, and the overall time complexity 
will reach up to �������.  

Three properties are held by a call graph: 
• The distance between 2 nodes is of a length 1. 
• The graph diameter is small with respect to the number 

of nodes. For example, a call graph with over 10000 
nodes has a diameter less than 100. 

                                                           
1 http://en.wikipedia.org/wiki/Dijkstra’s_algorithm 

• A graph contains a limited number of edges. In other 
words, a function call graph is a sparse graph. 

With these properties, a call graph distance matrix is 
relatively sparse and most distance values in the matrix are 
small positive integers. Different from the existing algorithms 
for construction of call graphs, we build the distance matrix on 
the basis of the connection relationships among nodes. 

Algorithm 1 shows the algorithm for construction of call 
graph distance matrix. The input includes an initial graph and 
an empty 2-dimension distance matrix. The distances among 
nodes increase from 1 to the diameter of the graph.  

 
Algorithm 1 Call Graph Distance Matrix  

1:  function Distance (Graph, matrix) : 
2:   for each row i column j in matrix do 
3:        matrix[ i ][ j ] = infinity 
4:  end for 
5:  distance = 1 
6:  for each edge e( i , j ) in Graph do 
7:         matrix[ i ][ j ] = distance  
8:         matrix[ j ][ i ] = distance  
9:  end for 

10:  updated = true  
11:  while updated do 
12:         distance ++ 
13:         updated = false  
14:         for each row i column j in matrix do 
15:                if matrix[ i ][ j ] == distance - 1 then 
16:                       for each vertex k in Graph do 
17:                               if k != i && matrix[ j ][ k ] == 

1&& matrix[ i ][ k ] > distance then 
18:                                     matrix[ i ][ k ] = distance  
19:                                     matrix[ k ][ i ] = distance  
20:                                     updated = true 
21:                               end if 
22:                        end for 
23:                 end if 
24:          end for 
25:   end while 
26: end function 

 
The workflow is defined below: 

 

When one iteration completes, each distance value is 
greater than or equal to its previous value. Since each  
���������������� � ��   will be checked at most once, when 
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1. Set initial value of medoids, and randomly select k of 
the n data points as the medoids. 

2. Associate each data point to the closest medoid. 
("closest" is defined using Euclidean distance) 

3. For each medoid �� 
For each non-medoid data point �� 

Swap �� and �� and compute the total cost of 
the configuration ��� 

4. Select the configuration with the lowest cost. 
5. Repeat steps 2 to 4 until there is no change in the 

medoid. 

every node is visited, the time complexity in a worst case is 
�������, which is more efficiency than the Dijkstra algorithm 
whose time complexity is �������. 
B. Scenario Clustering 

Clustering is used to reduce scenario duplication. Suppose 
defects are predicted directly after the call graph building 
process, scenarios may share some common call paths. The 
main idea of clustering is to group instances with similar 
attributes by taking static classification of call paths. As a 
result, the instances in each group have relatively high 
similarity.  

A commonly used clustering algorithm is k-means [28], 
while it is not suitable for scenario clustering. If we use 
functions of the call graph as the clustering objects, and define 
the frequency of inter function calling as the object distance, 
the k-means algorithm can satisfy the requirements for scenario 
extraction. However, the centroids of the k-means can barely 
be any of the input objects (i.e., functions). Thus it becomes 
impossible to figure out the distance between objects and the 
centroid.  

In our study, we use a mutation of k-means, which is called 
k-medoids [29], to solve the problem. In contrast to the k-
means algorithm, k-medoids additionally takes a medoid as an 
object. Medoids are representative objects of a data set or a 
cluster with a data set whose average dissimilarity to all the 
objects in the cluster is minimal. Medoids are similar in its 
concept to centroids, but they are always the members of the 
data set. Commonly, the sum of distances between medoids 
and the other objects in the cluster is the shortest. The most 
common realization of k-medoid clustering is the Partitioning 
Around Medoids (PAM) algorithm. The workflow is as follows: 

 

 
The most time-consuming step of k-medoids is the third 

step. The complexity of computing ���  is �� � . The 
complexity of swapping step for each medoid ��  and each 
non-medoid data point �� is ��! 	�. Suppose the upper bound 
of the iteration is t, the time complexity of k-medoids is 
��!� 	� . To increase the computation efficiency, the third 
step is taken in parallel in our study. 

IV. COMPRESSED C4.5 MODELS  
This section provides an overview of C4.5 models and 

Spearman’s rank correlation coefficient, and then presents the 
compressed C4.5 models in detail. 

A. Preliminaries 
C4.5 algorithm uses the concept of information entropy to 

build a decision tree from a set of training data. The 
Spearman’s rank correlation coefficient is introduced into the 
new models so that the choosing of attribute as the root node 
of the decision tree becomes much more in line. 

1) The C4.5 Algorithm: Let " be a set with   data samples, 
"  can be divided into #  different classes $��� � %& '&(�(�(�& #� , 
and every class $� have  � samples. The entropy of dividing " 
into # classes is defined, 

��"� ) *+,���
	�,��
-

�.�
�����������������������%��

where ,� � /0
/  is the probability of a sample in S that belongs to 

class $�. Entropy characterizes the purity of a sample set. 
Let the set of all the different values of attribute A be 12, 

and "3 be the subset of samples with value v on attribute A, that 
is "3 �� � 45� 6 �"�7�5� �� �89. After an attribute A is chosen to 
be the root of a sub-tree, the entropy of classifying "3  is 
defined, 

��"& 7� ) + �"3�
�"�36:;

��"3�������������������������'� 

where ��"3� is the entropy of dividing samples in set "3 into c 
classes. The information gain of attribute A to the sample set S 
is, 

 <�� �"& 7� ) ��"� * ��"& 7�����������������������=� 
C4.5 uses the gain ratio as the basis of choosing attributes 

as the root of a sub-tree when the decision tree is constructed. 
The gain ratio is, 

<�� >�����"& 7� ) <�� �"& 7�
",���? @��"& 7��������������A� 

Here split information is 

",���? @��"& 7� ) *+�"��
�"� ��
	

�"��
�"�

-

�.�
������������B� 

where "� is c sample subsets by dividing S using c values of 
attribute A. Split information is the entropy of S on all values of 
attribute A. 

2) Spearman’s Rank Correlation Coefficient: The 
Spearman’s rank correlation coefficient is used to study the 
relationships among variables and to quantify the degree of 
correlation of two columns of Pearson correlation coefficients 
among the ranked variables. It is calculated during the 

409



construction of the decision tree by choosing an attribute with 
values from all instances as 1�, letting defects number of every 
instance be C�, and then converting the n raw scores 1�, C� to 
ranks �� , D� .The Spearman correlation coefficient E  is 
computed: 

E ) F ��� * �G��D� * DH��
IF ��� * �G�	 F �D� * DH�	��

������������������J� 

Tied values are assigned a rank equal to the average of their 
positions in an ascending order. For example, the third and 
fourth values are equal, and the corresponding rank is �K�	 �
=LB 

B. C4.5 Model Improvement 
In our previous study we have compared Bayes Network, 

CART and C4.5 by analyzing their confusion matrix (when 
instances are classified, a confusion matrix is be generated by 
WEKA for every model), and found that C4.5 is the best. 

However, the existing prediction models may not be precise 
enough and an optimization of the decision tree algorithm is 
anticipated. To achieve better accuracy, we attempt to improve 
C4.5 in three directions [20]. 

1) Compressed C4.5 model I: The first model multiplies 
the Spearman’s correlation coefficient and the gain ratio, and 
then uses the product to replace the original gain ratio for 
selecting test attributes. The Spearman’srank correlation 
coefficient can be positive or negative.The gain ratio is 
defined as 

<>M�N%��"& 7� ) <�� >�����"& 7� O E������������P� 
We adopt multiplication instead of using addition, 

according to the situation that both the gain ratio and the 
Spearman’s rank correlation coefficient can represent the 
relationships between the metrics and the defects, while the 
weights of them are not clear.  

2) Compressed C4.5 model II: In the second compressed 
C4.5 model, the Spearman’s rank correlation coefficients are 
sorted in an ascending order. Let the ranks of the coefficients 
be >� !�E� . Compressed C4.5 model II uses >� !�E� 
instead of E as the multiplier. This model ignores the value of 
the Spearman’s rank correlation coefficient, but takes the 
importance of every attribute into account.  

The gain ratio for compressed C4.5 model II is defined as 

<>M�N'��"& 7� ) <�� >�����"& 7� O >� !��E��������Q� 
3) Compressed C4.5 model III: The third model introduces 

the Spearman’s rank correlation coefficient into the process of 
calculating the gain ratio in order to balance the fluctuation of 
gain ratio in different metrics. The main idea of the C4.5 
algorithm is to choose the attribute with the biggest information 
gain (in C4.5, we choose the root node on the basis of the gain 
ratio which is calculated by dividing information gain by using 
the split information, while the split information is introduced 
only to solve the multi-valued bias problem in ID3 [21], the 
ancestor of C4.5.) as the root node of a sub-tree in which the 
information gain is the compression of the entropy expectation 

caused by assigning the value of attribute A. Along with the 
information gain, we adopt Spearman’s rank correlation 
coefficient as the basis. The first step of using the compressed 
C4.5 model III is to reduce the importance of information gain. 
Therefore, we re-define E(S,A), and the entropy of classifying 
"3 by attribute A is, 

�R�"& 7� ) + S"3" 
 ET��"3�
36:;

�������������������U� 

Since the split information is used to reduce the influence 
of the multi-valued bias problem, we keep it in the second step, 
but let it be significant when calculating gain ratio. Split 
information in formula (5) is re-defined, 

",���? @�R�"& 7� ) *+��"���"� 
 E���
	
�"��
�"�

-

�.�
����������%V� 

The modified gain ratio is calculated by using the formula 

<>M�N=�"& 7� ) <�� W�"& 7�
",���? @�W�"& 7� �

��"� * �W�"& 7�
",���? @�W�"& 7���%%� 

V. EXPERIMENTAL STUDY 
We have performed an experiment to evaluate the 

effectiveness of scenario-based defect prediction approach on 
improved C4.5 models. Next describes the detailed setup, 
including the defect prediction process, the subject systems, 
the metrics (features) and evaluation measures. 

A. Defect Prediction Process 
To evaluate our approach, we have compared our approach 

with the file-based prediction approach. 
The predict process is divided into three steps: mining 

metrics from a software repository including source code 
metrics, change metrics and defect history metrics; inputting 
the formatted metrics into the improved C4.5 models and 
outputting prediction accuracy, verifying the effectiveness of 
the scenario-based approach by comparing it with the file-
based approach. 

Fig.1. describes the workflow of experiment, where 
DeriveScenario tool is implemented by the authors to extract 
functional scenarios; Understand tool2 is used to extract the 
source code metrics from source codes and extracted scenarios; 
FilterMetrics tool, LinkBugs tool and GenerateWekaData tool 
are developed by the authors to filter metrics from Understand 
and to mine change metrics and defect metrics and format 
metrics according to ARFF3 format respectively. 

Along with the scenario-based approach through 
DeriveScenario tool, we have extracted file-level metrics to 
build file-based defect prediction approach. For each approach, 
the output defect density is examined and the classification 
accuracy of training data set and testing data set is recorded.  

                                                           
2 http://www.scitools.com/index.php 
3 An ARFF (Attribute-Relation File Format) file is an ASCII text file that 
describes a list of instances sharing a set of attributes. 
http://www.cs.waikato.ac.nz/~ml /weka/arff.html 
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Fig. 1. Defect Prediction Process

We have further compared the sizes of the decision trees. 
The inputs of the improved C4.5 models include source code 
metrics along with the change metric and defect history metric. 
The output is a classification of the source code files into ten 
levels by their defects number. In the experiment, WEKA4 was 
used to predict defects. 

B. Data 
We perform our experiments on the Eclipse platform 5 . 

Eclipse is a popular open source system that has been 
extensively studied before. In the experiment, we focused on 
the metrics on the org.eclipse.jdt.core component. 

Table I shows an overview of the org.eclipse.jdt.core 
versions used in this study. We downloaded the repository 
from CVS6 and the bug reports from Bugzilla7. The versions 
lasted from June 27, 2002 to September 9, 2011. 

C. Metrics 
1) Source Code Metrics: We have used two different levels 

of source-code metrics. Each version downloaded from CVS 
was preprocessed and only files with defect history in Bugzilla 
were left and tracked. After that, Understand tool was used to 
extract source code metrics. 

Table II lists the metrics used for file-based defect predictor. 
Table III lists the function-level metrics that can be used to 
extract scenario-based source code metrics. We re-organize 
them according to scenarios before data generation. 

2) Change & History Metrics: We only use one change 
metric, i.e., Number of Revisions (NR). The NR metric 
represents the number of revisions of a given Java class during 
the development of the investigated releases of a software 
system. 

D. Evaluation Measures 
The performance measures used for the scenario-based 

defect predictor and file-based defect predictor are summarized 
below. 
 

                                                           
4 http://www.cs.waikato.ac.nz/ml/weka/ 
5 http://www.eclipse.org 
6 http://archive.eclipse.org/arch/ 
7 https://bugs.eclipse.org/bugs/ 

TABLE I.  VERSIONS OF ECLIPSE JDT MODULE 

No Version Release Date No Version Released Date 
1 2.0.0 Jun 27, 2002 16 3.2.2 Feb 12, 2007 

2 2.0.1 Aug 29, 2002 17 3.3.0 Jun 21, 2007 

3 2.0.2 Nov 7, 2002 18 3.3.1 Sep 21, 2007 

4 2.1.0 Mar 27, 2003 19 3.3.2 Feb 21, 2008 

5 2.1.1 Jun 27, 2003 20 3.4.0 Jun 13, 2008 

6 2.1.2 Nov 3, 2003 21 3.4.1 Sep 11, 2008 

7 2.1.3 Mar 10, 2004 22 3.4.2 Feb 11, 2009 

8 3.0.0 Jun 25, 2004 23 3.5.0 May 27, 2009 

9 3.0.1 Sep 26, 2004 24 3.5.1 Sep 17, 2009 

10 3.0.2 Mar 11, 2005 25 3.5.2 Feb 11, 2010 

11 3.1.0 Jun 27, 2005 26 3.6.0 Jun 3, 2010 

12 3.1.2 Sep 29, 2005 27 3.6.1 Sep 9, 2010 

13 3.1.2 Jan 18, 2006 28 3.6.2 Feb 10, 2011 

14 3.2.0 Jun 6, 2006 29 3.7.0 June 13, 2011 

15 3.2.1 Sep 21, 2006 30 3.7.1 Sep 9, 2011 

 
• Accuracy. Accuracy measures the percentage of 

correctly classified instances of both the defective (true) 
and non-defective (false) classes. 

• Decision tree size. The size of a generated decision tree 
represented by a leaf node number and non-leaf node 
number is the key factor that determines the running 
time of classifying defects and therefore reflects the 
efficiency of the models. 

E. Result and Analysis 
Next presents the detailed experimental results for 

comparisons of file-based and scenario-based with and without 
defect-free functions. 

1) With Defect-free Functions: In the experiments, 10 runs 
of 10-fold cross validation were performed when we trained 
the classification models on the fit data set. 

Understand 
Metrics Software 

Repository 

Defect 
Density Improved 

C4.5 models 

Source code 
Metrics 

ARFF files 

Understand 

FilterMetrics 

Generate Weka 
Data 

Functional 
Scenarios 

DeriveScenario  

Understand  

input output 

Change 
&History 
Metrics

LinkBugs 
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TABLE II.  FILE-LEVEL METRICS OF UNDERSTAND 

Understand Metrics Source Code Metrics 
SumCyclomatic  WMC 

MaxInheritanceTree  DIT 

PercentLackOfCohesion  LCOM 

CountOuput FanOut 

CountLineCode  LOC 

CountInput  FanIn 

CountDeclMethodAll RFC 

CountClassDerived  NOC 

CountClassCoupled  CBO 

CountDeclClassMethod NOM 

CountDeclClassVariable  NOA 

 

TABLE III.  FUNCTION-LEVEL METRICS OF UNDERSTAND 

Understand Metrics Source Code Metrics 
Cyclomatic WMC 

Essential  ESS 

MaxNesting  MN 

CountOuput FanOut 

CountLineCode  LOC 

CountInput  FanIn 

CountPath  CP 

RatioCommentToCode RCC 

 

TABLE IV.  COMPARISON OF FILE-BASED AND SCENARIO-BASED 
APPROACH ON ACCURACY AND DECISION-TREE SIZE (WITH DEFECT-FREE 

FUNCTIONS) 

 File-based Scenario-based 
Training set true 61076 93.0923% 61462 93.6806% 

false 4532 6.9077% 4146 6.3194% 

Testing set true 60925 92.8622% 60787 92.6518% 

false 4683 7.1378% 4821 7.3482% 

non-leaves 103 629 

leaves 52 315 

 
Table IV compares the accuracy and decision-tree size 

between the file- and scenario-based approaches. As shown in 
table IV, the accuracy indicates that there exists no apparent 
difference. Even more, file-based approach (92.8622%) was 
better than scenario-based approach (92.6518%) on testing set. 
The result is not satisfactory with the decision-tree size of 
scenario-based approach 6 times larger than the file-based 
approach. 

TABLE V.  COMPARISON OF FILE-BASED AND SCENARIO-BASED 
APPROACH ON ACCURACY AND DECISION-TREE SIZE (WITHOUT DEFECT-FREE 

FUNCTIONS) 

 File-based Scenario-based 
Training set true 2999 64.5919% 3392 73.0877% 

false 1644 35.4081% 1249 26.9123% 

Testing set true 1596 34.3743% 1710 36.8455% 

false 3047 65.6257% 2931 63.1545% 

non-leaves 1329 629 

leaves 665 315 

 
To find out the reason, we have taken a deep investigation 

about the confusion matrix built in WEKA (when instances 
were classified, a confusion matrix was generated by WEKA 
for every model). Table VI shows the confusion matrix of file-
based and scenario-based approach (with defect-free functions). 
In the matrix, instances were classified into ten levels by their 
defect number and most instances are grouped into the first 
level a. Take the first row of the training set in file-based 
approach as an example. 60939 of 60965 instances are of level 
a. In fact, most instances were defect-free (92.88% in file-
based approach while 92.85% in scenario-approach). This 
draws a conclusion that “an overly centralized data 
distribution will affect the eventual learning result and lead to 
bad defect prediction performance”. 

2) Without Defect-free Functions: In order to reduce the 
impact of the centralized data distribution, we have removed 
all the instances in level a and build the defect prediction 
model again. We have pruned the defect-free instances and 
only worked on the instances with one or more defects. The 
results are listed in table V and tableVII. 

During the removing phase, data in confusion matrix is 
evenly-distributed in table VII. In Table V we compare the 
results of the scenario-based approach with the ones of file-
based approach for accuracy and decision-tree size. The 
predictive accuracy of scenario-based approach is 73.0877% in 
training set and 36.8455% in testing set. Although the accuracy 
decreases for both approaches since the defect-free instances 
are pruned, our scenario-based shows better performance. 

In summary, the accuracy of scenario-based defect 
prediction is higher than that of the file-based defect prediction. 
The scenario-based approach increases the accuracy by 8.5% in 
the training set and 2.5% in the testing set. For running time, 
the scenario-based approach offers better result, which reduces 
the decision tree size by 52.65% on average with leave nodes 
and non-leave nodes of size 315 and 629. 

F. Summary and Threats to Validity 
Our evaluation shows that scenario-based defect prediction 

on improved C4.5 model offers high performance. If the 
defect-free instances are removed, the scenario-based approach 
outperforms file-based approach in its accuracy and running 
time. 

The threats to the validity are as follows. The threat to 
internal validity lies in the implementation of the experimental 
study. To reduce this threat, the authors of this paper reviewed 
and tested the code. 
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TABLE VI.  CONFUSION MATRIX OF FILE-BASED AND SCENARIO-BASED 
APPROACH (WITH DEFECT-FREE FUNCTIONS) 

  Level 
a b c d e f g h i j 

fil
e 

T
ra

in
in

g 
se

t 

a 60939 3 3 0 0 0 0 0 0 20 

b 1820 20 4 0 0 0 0 1 0 9 

c 844 3 15 0 0 0 0 1 0 12 

d 443 4 0 1 0 1 0 0 0 6 

e 380 2 1 0 3 1 0 0 0 6 

f 160 2 0 0 0 4 0 0 0 5 

g 170 1 1 1 0 0 0 0 0 6 

h 106 1 2 0 0 0 0 4 0 4 

i 86 0 0 0 0 0 0 1 5 4 

j 409 1 1 0 1 2 0 1 3 85 

T
es

tin
g 

se
t 

a 60824 60 30 7 6 2 1 2 3 30 

b 1793 20 10 6 2 1 1 1 0 20 

c 834 15 5 3 1 2 0 2 0 13 

d 424 7 6 2 0 3 1 1 1 10 

e 372 9 1 2 1 2 0 0 1 5 

f 150 5 3 0 2 0 0 0 2 9 

g 167 2 0 1 0 0 0 2 0 7 

h 99 6 3 0 1 0 1 0 1 6 

i 79 4 1 0 0 2 0 0 1 9 

j 386 17 7 4 4 8 1 1 3 72 

sc
en

ar
io

 

T
ra

in
in

g 
se

t 

a 60918 12 8 10 2 1 0 0 0 16 
b 1800 161 4 4 1 1 1 0 3 12 

c 780 8 75 3 1 0 1 0 1 10 

d 393 10 3 67 1 0 0 0 0 6 

e 249 15 9 4 22 0 0 0 1 6 

f 120 6 3 3 2 9 1 0 3 5 

g 113 8 4 6 0 0 15 0 0 7 

h 70 4 6 2 1 2 0 6 0 9 

i 63 3 6 0 3 1 1 1 13 2 

j 269 17 9 9 5 1 1 2 2 176 

T
es

tin
g 

se
t 

a 60645 112 61 41 13 9 9 7 9 61 
b 1837 48 24 13 10 6 3 2 4 40 

c 783 26 18 6 9 2 4 3 2 26 

d 414 17 11 5 5 3 0 2 1 22 

e 254 19 8 7 1 0 3 1 0 13 

f 122 13 4 6 0 0 1 1 1 4 

g 120 10 8 5 0 1 1 0 2 6 

h 76 5 3 2 1 0 0 1 1 11 

i 66 5 6 2 1 1 1 1 0 10 

j 317 43 16 14 9 4 5 7 8 68 
 

The threat to external validity is from the objective 
programs used in the experiment. To reduce the threat, we have 

studied 30 versions to avoid bias. Moreover, the module we 
choose has been widely used in software testing and defect 
prediction approach. 

The second external validity lies in the influence of defect-
free functions. It is obvious that more experimentation is 
required, to generalize out results and help us take a further 
investigation of the modules with defect-free instances that 
have no obvious improvement when the scenario-based 
approach is adopted. 

The third external threat is induced by our choice to use 
compressed C4.5 models. To reduce the threat, our previous 
work has concluded that C4.5 is best. Besides, our 
experimental results are measured by both accuracy and the 
decision tree size, which has been widely used in the 
evaluation of the prediction approaches. 

The threat to conclusion validity concerns issues that affect 
the ability of drawing a correct conclusion from the analysis of 
the gathered data. We chose a set of statistical tests to ensure 
that our observations do not occur by chance. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed a scenario-based approach 

to defect prediction using compressed C4.5 model. The 
approach applies a 2-dimension distance matrix and derives 
scenarios with a time complexity of �������, and adopts the k-
medoids clustering algorithm to group scenarios. After building 
models through our improved C4.5 models, we have performed 
a case study on eclipse JDT components. In the experiment, we 
conclude that: 

• With defect-free functions, the prediction accuracies of 
the scenario-based approach and the file-based 
approach are close to each other. The scenario-based 
approach is 0.5883% higher than the file-based 
approach in the training set and 0.2104% lower than 
the file-based approach in the testing set. 

• Without defect-free functions, scenario-based defect 
prediction approach offers high performance. The 
scenario-based approach improves the prediction 
accuracy by 8.5% on the training set and 2.5% on the 
testing set. 

• Without defect-free functions, the scenario-based 
approach reduces the size of the decision tree by 52.65% 
on average. The number of the leave nodes and non-
leave nodes are 315 and 629. 

One disadvantage of our experiment is the choosing of 
modules. The module studied in this paper has few defects and 
the distribution of defects tends to be one or two defects in one 
file. This generates a little interference to the comparison of the 
scenario-based defect prediction approach and the file-based 
approach. In the future we will apply the scenario-based 
approach to more open source software to overcome the 
problem of few defects in a file. Apart from that, the study 
result shows that the scenario-based approach performs well 
only when the defect-free function instances have been 
removed. We will also focus on analyzing and reducing the 
impact of defect-free functions by using other projects. 

Although C4.5 is concluded to be best, further work should 
be conducted to compare our work with the scenario-based 
approach using other models. 
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TABLE VII.  CONFUSION MATRIX OF FILE-BASED AND SCENARIO-BASED 
APPROACH (WITHOUT DEFECT-FREE FUNCTIONS) 

  Level 
a b c d e f g h i j 

fil
e 

T
ra

in
in

g 
se

t 

a 0 0 0 0 0 0 0 0 0 0 

b 0 1651 84 27 40 5 5 10 2 30 

c 0 320 474 26 8 6 3 5 3 30 

d 0 166 57 202 7 4 2 1 2 14 

e 0 137 28 28 174 5 1 1 1 18 

f 0 53 20 12 9 60 0 0 2 15 

g 0 61 25 15 7 7 49 3 1 11 

h 0 34 12 6 7 1 2 42 3 10 

i 0 25 4 8 3 3 3 2 34 14 

j 0 105 24 21 14 9 5 8 4 313 

T
es

tin
g 

se
t 

a 0 0 0 0 0 0 0 0 0 0 

b 0 1143 298 120 96 32 25 28 14 98 

c 0 463 180 71 32 19 8 16 12 74 

d 0 238 93 33 30 7 7 10 1 36 

e 0 207 49 28 59 7 7 1 5 30 

f 0 83 29 12 9 7 4 3 1 23 

g 0 80 25 16 14 11 13 2 3 15 

h 0 42 14 9 6 1 3 16 4 22 

i 0 34 22 7 2 1 3 3 3 21 

j 0 164 78 37 26 23 11 12 10 142 

sc
en

ar
io

 

T
ra

in
in

g 
se

t 

a 0 0 0 0 0 0 0 0 0 0 

b 0 1839 57 27 14 6 10 3 6 25 

c 0 251 553 16 12 2 8 1 2 34 

d 0 105 40 302 6 1 4 4 2 16 

e 0 72 32 20 163 4 2 1 1 11 

f 0 47 15 16 5 50 3 2 3 11 

g 0 42 17 8 4 4 66 2 0 10 

h 0 20 12 10 9 4 1 30 0 14 

i 0 20 12 6 8 1 2 2 34 8 

j 0 49 24 23 12 9 7 6 6 355 

T
es

tin
g 

se
t 

a 0 0 0 0 0 0 0 0 0 0 

b 0 1259 317 120 89 38 34 9 21 100 

c 0 433 189 92 47 13 19 11 6 69 

d 0 202 88 87 23 14 14 10 8 34 

e 0 157 54 28 17 2 8 4 8 28 

f 0 62 32 13 7 4 6 2 5 21 

g 0 65 28 14 9 3 0 5 4 25 

h 0 33 15 9 9 6 5 5 0 18 
i 0 34 16 11 8 2 1 1 2 18 

j 0 142 70 37 38 17 15 15 10 147 
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