Building a Domain Knowledge Base from Wikipedia: a Semi-supervised Approach

Kai Chen†, Xiang Dong†, Jianguang Zhu†, Beijun Shen‡
School of Electronic Information and Electrical Engineering
Shanghai Jiao Tong University, Shanghai, China
Email: †voyageckg@sjtu.edu.cn, †dongxiang@sjtu.edu.cn, †jsztwss@sjtu.edu.cn, ‡bjshen@sjtu.edu.cn

Abstract—Knowledge base is becoming indispensable to software engineering and knowledge engineering. However, the existing domain knowledge bases are always handcrafting constructed and small-scale. In this paper, we propose a semi-supervised approach to detect domain concepts and build a knowledge base for software engineering from Wikipedia. First, the approach selects domain relevant tags from Stackoverflow. Then, it matches Wikipedia entities and expands the concept set through an improved label propagation algorithm. A rule-based method is designed to discover semantic relations including relate, subclassOf and equal by analyzing the structure information of Wikipedia. A relation derivation mechanism is provided to optimize the relation set. We finally construct SEBase, a domain-specific knowledge base of software engineering. Experimental results show the high accuracy of the integrated concepts and relations. Compared with other knowledge bases, SEBase has the widest coverage of concepts and relations about software engineering.

Index Terms—Knowledge Base; Software Engineering; Semi-supervised; Domain Concept; Semantic Relation

I. INTRODUCTION

Knowledge base plays an important role in software engineering and knowledge engineering. For example, in program comprehension, knowledge bases are used to compute the semantic similarities between words from the comments and identifiers in software [1]. In software maintenance, knowledge bases provide an effective way to measure the relatedness between documents [2].

Research on general knowledge base has been quite mature. Some famous achievements like DBpedia [3], Yago [4], Wikitaxonomy [5], BabelNet [6] and Probase [7] are proposed in recent years. Those knowledge bases have a large number of concepts and relations while achieving high accuracy and coverage. However, the knowledge in them is not specific and not in-depth enough when we focus on some particular domains like software engineering.

Building domain-specific knowledge base is a difficult task requiring skills in logic and ontological analysis. Domain experts need to determine the scope of the domain concepts and construct relations for them. However, handcraft construction is time-consuming and small-scale. Although there has been a considerable amount of prior research on automatic construction of software engineering knowledge base, a high-quality knowledge base is still lacked because learning knowledge from any single data source cannot achieve desirable effect and domain concepts are difficult to distinguish.

Knowledge learning can be encyclopedic-based or web-based. For the encyclopedic-based approaches, researchers mainly focus on Wikipedia for its abundant structural information. Wikipedia is the most comprehensive and authoritative knowledge source on the world, which has a total of 17 million entries composed of title, redirect title, comment, text and other information.

For web-based approaches, general knowledge bases learn knowledge from kinds of web pages but domain knowledge bases only consider domain relevant web pages. Recent year researchers pay more attention on Stackoverflow. Stackoverflow is one of the most famous QA websites about software engineering and provides a tagging system for users to annotate questions freely. The tags of Stackoverflow are more domain relevant.

Generally speaking, encyclopedic-based approaches can achieve higher accuracy but worse coverage than web-based approaches. We select Wikipedia as our main knowledge source and select Stackoverflow as supporting source to obtain the advantages of both. We detect Wikipedia entities which have high relevance to Stackoverflow tags by matching and expansion methods.

The problem is non-trivial and poses unique technical challenges follow:
Fig. 2: An example from Stackoverflow

1) Since most of the Stackoverflow tags are domain relevant, they are provided by ordinary users freely. A large number of low quality tags are existed. If the domain relevance of tags cannot be ensured, the accuracy of final results cannot achieve our expectancy. Therefore, how to ensure the quality of tags is problematical.

2) Traditional matching methods are difficult to interlink Stackoverflow tags and Wikipedia entities. For example, tag “java” and entity “java man” are seem related but it is ridiculous to treat the latter as a software engineering concept.

3) Since a part of domain concepts can be detected by matching method, more concepts cannot be discovered because tags are not comprehensive enough. For example, “Ocaml” is a programming language but no tag can match it. How to detect domain concepts which have low relevance to tags is also a challenging problem.

In order to solve challenges above, we divide the problem into two sub problems - domain concepts detection and semantic relations discovery. For the first sub problem, we select domain relevant tags from Stackoverflow, and make head matching with Wikipedia entities to obtain a part of domain concepts. Then, we treat Wikipedia as a large knowledge network, and propose a semi-supervised method based on an improved label propagation algorithm to acquire domain network of software engineering. For the second problem, we discover three types of semantic relations including relate, subclassOf and equal by analyzing the structure information of Wikipedia. We also propose a relation deriving method to delete mistaken or redundant relations.

To the best of our knowledge, our work is the first to build software engineering knowledge base by interlinking Stackoverflow tags and Wikipedia entities. Our contributions mainly include:

- We systematically explore the knowledge provided by Wikipedia and Stackoverflow, and leverage a series of methods including tag selection, head matching and label propagation to detect domain concepts.
- We analyze the structure information of Wikipedia, and discover three types of semantic relations from Wikipedia. A derivation mechanism is designed to optimize the relation set.
- We carry out a comprehensive set of experiments to evaluate our approach. The results show our approach can outperform the several existing knowledge bases in terms of accuracy and coverage significantly. Thus, we publish SEBase\(^1\) on the Internet which will benefit many applications in software engineering.

II. RELATED WORK

A. Knowledge Base Construction

Regarding Web-based methods, it can be free text based or social tag based. For the free text based methods, Probase [7] builds the largest taxonomy which contains over 2.7 million classes from 1.7 billion Web pages. WiseNet [9] builds a semantic network by extracting relation instances from Wikipedia page bodies and ontologies. For social tag based methods, Xiance Si et al. [10] estimated the conditional probability between tags and designed a greedy algorithm to eliminate the redundant relations. Jie Tang et al. [11] captured the hierarchical semantic structure of tags by a learning approach.

Zhishi.schema [12] is the first achievement to learn knowledge from tags and categories in popular Chinese websites.

B. Software Engineering Knowledge Base

Software engineering knowledge base is a type of domain knowledge base. However, there are only a limited number of researches which are related to software engineering knowledge base. Kavi Mahesh et al. [13] proposed LOaD-IT, a concept network to help software developers read technical documents faster. Mr.Izzeddin A.o. el at. [14] constructed a programming language ontology. Lexical Views [15] uses some natural language processing techniques to extract concepts from software terminology, and organize them into a tree structure like WordNet. Software.zhihsi.schema [16] uses tags of Stackoverflow build a software engineering knowledge base. We broaden the scale of concepts based on Software.zhihsi.schema by interlinking Stackoverflow tags to Wikipedia entities.

C. Set Expansion

The most challenge to build software engineering knowledge base is domain concepts detection. Set expansion is the most effective method to discover concepts. It can be text-based and graph-based. For the text-based approaches, Richard

\(^1\)https://datahub.io/dataset/sebase
C. Wang et al. [17] proposed a language-independent set expansion method based on pattern selection. KnowItAll [18] is famous for its high effect. It extracts information from the web and induce the rule templates. Regarding graph-based approaches, label propagation algorithm (LPA) is widely used. LPA is a semi-supervised method. Jierui Xie et al. [19] [20] focused on community detection using a neighborhood strength driven LPA. Liu et al. [21] designed an improved LPA in large-scale bipartite networks to detect community. In this paper, we propose a Wikipedia-based LPA called WLPA to detect community of software engineering.

III. APPROACH

A. Approach Overview

We propose a semi-supervised approach to build a knowledge base for software engineering from Wikipedia. As show in Figure 3, it consists of five main components, namely Tag Selection, Head Matching, Label Propagation, Relation Discovery and Post Processing. Tag Selection tries to select software engineering tags from Stackoverflow. Head Matching matches tags with Wikipedia entities to obtain a part of domain concepts. Label Propagation leads to discover a domain network including concepts and relations. Relation Discovery is to extract three types of relations from the domain network. Post Processing is to delete mistaken or redundant relations by three type of relation deductions. Finally we build a domain knowledge base originated from Stackoverflow tags and composed of Wikipedia concepts and relations.

B. Tag Selection

Since tags in Stackoverflow are provided by normal users freely, the domain relevance of tags is unreliable. For example, “music” and “jave” are in the tag set, but the former is domain irrelevant and the latter is a wrong writing of “java”. A selection is necessary to delete domain irrelevant and mistaken tags. The standards of selection are based on two phenomenons. The first is that the tags from questions with high vote score and favorite number are more domain relevant. This phenomenon can be interpreted as that the users always pay more attention on software engineering related questions. Another truth is that the tags with high frequency are more reliable than tags with low frequency. We select tags that have high occurrence frequency and are extracted from questions with high attention. The selection method is simple but effective. The details of the selection are as follows:

1) We select questions which have the top 10% vote score and the top 10% favorite number.
2) We select tags from those questions and make a ranking by occurrence frequency.
3) We select the top 30% tags.

C. Head Matching

The purpose of head matching is to detect Wikipedia entity which has high relevance with the selected tags. The details of the matching are as follows:

1) We first unify the format of tags and entities. All letters are transformed into lowercase. A part of tags and entities are split by “-” and the others are split by spaces. We replace underscores and hyphens by spaces. Many tags and entities contain a version number, and we delete it directly because it does not affect semantic meaning. For our running example, “machine-learning” is transformed to “machine learning”, “Visual Studio 2012” is transformed into “visual studio”.
2) For each tag and entity, we select its headword as matching standard. We use a simple but effective rule to extract headword: If the tag or entity is a single word, headword is itself. Otherwise, if it contains prepositions such as “of”, “in” or “for”, then headword is the previous word of the preposition. If not then headword is the last word. For example, we extract “sort” from “heap sort” and “architecture” from “logic architecture of hadoop”. It is worth mentioning that some Wikipedia entities such as “java (programming language)” have label. We extract headword from its label. In addition, we use StandfordNLP tool to stem the headword. For some running examples, “programming” is transformed into “program”, “algorithms” is transformed into “algorithm”.
3) For each Wikipedia entity, we check if there are one or more tags with same headword. Once hit, we confirm the entity is a software engineering concept. In order to compare faster, we establish inverse index on headword. We compute digital fingerprint of headword as index.

\(^2\)http://nlp.stanford.edu/
D. Label Propagation

The head matching only captures the semantic relation between software engineering concepts in an explicit way, however it cannot detect the implicit relations between them. For example, “Ocaml” is a programming language but no tag has semantic relation with it. So “Ocaml” cannot be detected by head matching but it exactly is a domain concept. In order to solve this problem, we propose a set expansion method by leveraging the structure information to detect the implicit relations between domain concepts.

Wikipedia can be regarded as a large knowledge network. Some concept pairs are connected by links. The linked entity is related to current entity. Correlation degree is proportional to the time of links. We extract links from Wikipedia page and use these links to quantitatively characterize the similarities or relatedness between entities. There are more links between concepts which in the same domain than in different domains. We run an improved label propagation algorithm (LPA) called WLPA to expand the domain concepts set. The details of the algorithm are as Table I.

| Algorithm: WLPA |
|-----------------|------------------|
| **Input:** seed concepts set S, Wikipedia entities set W |
| **Procedure:** |
| 1. construct a knowledge network $G(V, E)$ G is directed graph, $V = W$ |
| edge $(u, v) = \infty$ if node u and v connect by redirect title |
| edge $(u, v) = o$ if node u and v connect by category |
| edge $(u, v) = l(u, v)$ if node u and node v connect by link |
| where $l(u, v)$ equals to the number of link from node u to node v |
| $\infty \gg o \gg \max(l(u, v))$ |
| 2. initialize nodes with unique labels |
| $\forall n \in S$, $c_n = l_Y$ |
| $\forall n \in V \setminus S$, $c_n = l_N$ |
| 3. update each node’s label |
| $\forall n \in V \setminus S$, $c_n = l_Y$ |
| if $\exists u$, $c_u = l_Y$, $e(n, u) = \infty$ or $e(n, u) = \infty$ or $\sum e(u, n) > e(v, n)$ or $\sum e(n, u) > \sum e(n, v)$ |
| where $c_u = l_Y$, $c_v = l_N$, $e() = \infty$ |
| $c_n = l_N$ else. |
| 4. if not converged, continue to 3 |
| 5. Return final label set $\{c_n\}$ |

Output: labeled network G

The edges in knowledge network G can be divided into three types that redirect title weighs ∞, category weighs 0 and normal link weighs the number of links. At the initializing step, we set nodes of seed concepts with stationary label l_Y. Those nodes would never change its label because they are detected by head matching and we treat them as “seed”. At the propagation step, we derive the label of nodes by comparing the sum of weight between l_Y neighbors and l_N neighbors, where l_Y and l_N indicate that the node is a domain concept or not. The weight of in-edges and out-edges are respectively computed. A propagation running example is shown in Figure 4.

![Fig. 4: A running example of label propagation](image)

The difference between WLPA and original LPA [22] mainly includes:

- WLPA works on directed graph but LPA works on undirected graph.
- Edges of WLPA graph have weight while edges of LPA graph do not.
- WLPA has a part of nodes with stationary label.

All of the above changes improve WLPA more befitting for Wikipedia knowledge network. Finally, WLPA generates a domain network composed of software engineering concepts.

E. Relation Discovery

In this subsection, we discover semantic relations from domain network. Three type of relations including relate, subclassof and equal are extracted. The edges of domain network are composed of Wikipedia structure relations including link, category and redirect title. They are manually constructed by Wikipedia entity contributors. We detect those high accuracy relations to SEBase’s relation sets. The conversion rules are as follows:

<table>
<thead>
<tr>
<th>Situation</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is B’s “Redirect Title”</td>
<td>A equal B, B equal A</td>
</tr>
<tr>
<td>A is in B’s “Category” set</td>
<td>B subclassOf A</td>
</tr>
</tbody>
</table>

In addition, We use Normalized Google Distance [23] to calculate the degree of correlation between two concepts and construct relate relation. Specifically, the Normalized Google Distance (NGD) between two concepts A and B is:

$$NGD(A, B) = \frac{\max\{logf(A), logf(B)\} - logf(A, B)}{logN - \min\{logf(A), logf(B)\}}$$

3 We also treat category and redirect title as types of link.
where \(N\) is the total number of edges; \(f(A)\) and \(f(B)\) are the number of out-edge of concepts A and B, respectively; and \(f(A, B)\) is the number of nodes that both A and B out-connected. In order to control the number of this kind of relations, we select the most 5 relevant concepts for a concept.

\section*{F. Post Processing}

We provide a derivation mechanism to delete mistaken or redundant relations. The relation deduction rules are as Table III, where \(A=B\) means that there is an equal relation between A and B, \(A\sim B\) means that there is a relate relation from A to B, \(A\rightarrow B\) means that there is a subclassOf relation from A to B.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Situation & Type & Operation \\
\hline
\(A\rightarrow B, B\rightarrow C, A\rightarrow C\) & Transitive Redundancy & Delete (A\rightarrow C) \\
\(A\rightarrow B, B\rightarrow A\) & Cycle Conflict & Delete (B\rightarrow A) \\
\(A=B, A\sim B\) & Synonym Conflict & Delete (A\sim B) \\
\(A=B, A\rightarrow B\) & Synonym Conflict & Delete (A\rightarrow B) \\
\hline
\end{tabular}
\caption{Derivation Rules}
\end{table}

\section*{IV. Evaluation}

In this section, we show the experimental results of our proposed approach. We mainly evaluate the accuracy and coverage of concepts and relations in SEBase.

\subsection*{A. Tag Quality Evaluation}

We first evaluate the quality of Stackoverflow tags. The accuracy evaluation has to be done by persons manually because of semantic comprehension required. However, due to the large number of concepts and relations, it is impossible to evaluate all of them by hand. Therefore, we design a random sampling strategy and a labeling process. We manually annotate some targets of sampled concepts or relations. The accuracy assessment on the sampled subset can further be used to approximate the correctness of the whole set. Three students from our laboratory are invited to participate in the labeling process. We provide them three choices namely agree, disagree and unknown to label each sample. Then we can compute the average accuracy.

We generate four tag sets for comparison. They are original set, question selected set (QS), frequency selected set (FS), and question and frequency selected set (QS+FS). We randomly extract 500 tags from four tag set as samples. Students annotate each tag independently. Then, we select 1,000 high correlative tags from original set to compute the coverage of four tag set. Because the tags are treated as seed, we consider the precision is more important than the recall. \(F_{0.5}\)-score is used to compare comprehensive quality of four sets. The results are evaluated in terms of precision, recall and \(F_{0.5}\)-score, as illustrated in Figure 5.

Where we can confirm the necessity of \textit{Tag Selection}. After question selection and frequency selection, the \(F_{0.5}\) score achieves 92.82%.

\subsection*{B. Seed Concepts Quality Evaluation}

This experiment is to evaluate the performance of \textit{Head Matching}. We generate three matching results for comparison. They are original result, head matching result and stemmed result. Original result is generated by matching tags and entities directly. Head matching result is generated by matching headwords. Stemmed result is generated by using stemmed headwords. The sampling is similar with tag quality evaluation. The results are evaluated in terms of precision, recall and \(F_{1}\)-score, as illustrated in Figure 6.

The evaluation shows the necessity of \textit{Head Matching}. The precision of directly matching is less than 60% despite the recall is higher. Head matching improves precision to 82.4%. The stemming operation balances precision and recall, and therefore the \(F_{1}\)-score achieves 77.42%.

\subsection*{C. Final Results Evaluation}

Next we evaluate the final concept and relation results. The sampling of concepts is similar with above evaluation. For relations, we randomly extract 500 \textit{equal}, 500 \textit{relate} and 500 \textit{subclassOf} relations as samples. Students label each relation independently. Then, we select same numbers of correct relations from Wikipedia to compute the coverage. The evaluation results are as Figure 7.

For concepts, our approach achieves precision of 76.7%, and recall of 92.4%. For relations, our approach achieves expected precision but unsatisfactory recall. This is because we mainly focus on domain concept detection and discover relation from
Fig. 7: Final results evaluation

Wikipedia structure. However, only 24% of Wikipedia entities have category and 43% of entities have a redirect title.

D. Comparison with Other Datasets

Since there are no published famous software engineering knowledge bases, we compare SEBase with the subsets about software engineering extracted from other well-known general taxonomies namely Yago and WikiTaxonomy. We also compare SEBase with our previous work, Software.zhishi.schema (SZS), which is constructed from Stackoverflow. The comparison results are as Table IV.

<table>
<thead>
<tr>
<th></th>
<th>SEBase</th>
<th>SZS</th>
<th>Yago</th>
<th>WikiTaxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td>193,593</td>
<td>38,205</td>
<td>898</td>
<td>711</td>
</tr>
<tr>
<td>SubclassOf</td>
<td>77,204</td>
<td>68,098</td>
<td>870</td>
<td>630</td>
</tr>
<tr>
<td>Equal</td>
<td>83,244</td>
<td>0</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>Relate</td>
<td>514,696</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

As for the relation number, SEBase is much larger than any other datasets. However, 76.2% relations of SEBase are relate and subsumption relations are relatively too few. Regarding to the granularity and richness of concepts, SEBase is more fine-grained than other existing datasets.

V. CONCLUSION AND FUTURE WORK

In this paper, we build SEBase, a large-scale knowledge base of software engineering which contains 193,593 concepts and 675,144 relations. Our approach interlinks Stackoverflow tags and Wikipedia entities, and uses a semi-supervised WLPA to learn knowledge from Wikipedia. The experiments show the high quality of concepts and relations in SEBase.

As for future work, we plan to improve SEBase from three aspects. We will try to extract more subsumption based on classifier. On the other hand, we will study on deep learning technology to obtain purer tags. Moreover, it is would be interesting to construct a more effective matching method by keyword extraction and topic model.

VI. ACKNOWLEDGEMENT

This research is supported by 973 Program in China (Grant No. 2015CB352203) and National Natural Science Foundation of China (Grant No. 61472242).

REFERENCES